File size: 14,989 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright 2020 Ross Wightman
# Modified model creation / weight loading / state_dict helpers
import logging
import os
import math
from collections import OrderedDict
from copy import deepcopy
from typing import Callable
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
from timesformer.models.features import FeatureListNet, FeatureDictNet, FeatureHookNet
from timesformer.models.conv2d_same import Conv2dSame
from timesformer.models.linear import Linear
_logger = logging.getLogger(__name__)
def load_state_dict(checkpoint_path, use_ema=False):
if checkpoint_path and os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict_key = 'state_dict'
if isinstance(checkpoint, dict):
if use_ema and 'state_dict_ema' in checkpoint:
state_dict_key = 'state_dict_ema'
if state_dict_key and state_dict_key in checkpoint:
new_state_dict = OrderedDict()
for k, v in checkpoint[state_dict_key].items():
# strip `module.` prefix
name = k[7:] if k.startswith('module') else k
new_state_dict[name] = v
state_dict = new_state_dict
elif 'model_state' in checkpoint:
state_dict_key = 'model_state'
new_state_dict = OrderedDict()
for k, v in checkpoint[state_dict_key].items():
# strip `model.` prefix
name = k[6:] if k.startswith('model') else k
new_state_dict[name] = v
state_dict = new_state_dict
else:
state_dict = checkpoint
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path))
return state_dict
else:
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()
def load_checkpoint(model, checkpoint_path, use_ema=False, strict=True):
state_dict = load_state_dict(checkpoint_path, use_ema)
model.load_state_dict(state_dict, strict=strict)
def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True):
resume_epoch = None
if os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
if log_info:
_logger.info('Restoring model state from checkpoint...')
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
name = k[7:] if k.startswith('module') else k
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
if optimizer is not None and 'optimizer' in checkpoint:
if log_info:
_logger.info('Restoring optimizer state from checkpoint...')
optimizer.load_state_dict(checkpoint['optimizer'])
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint:
if log_info:
_logger.info('Restoring AMP loss scaler state from checkpoint...')
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key])
if 'epoch' in checkpoint:
resume_epoch = checkpoint['epoch']
if 'version' in checkpoint and checkpoint['version'] > 1:
resume_epoch += 1 # start at the next epoch, old checkpoints incremented before save
if log_info:
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
else:
model.load_state_dict(checkpoint)
if log_info:
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path))
return resume_epoch
else:
_logger.error("No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()
def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, img_size=224, num_frames=8, num_patches=196, attention_type='divided_space_time', pretrained_model="", strict=True):
if cfg is None:
cfg = getattr(model, 'default_cfg')
if cfg is None or 'url' not in cfg or not cfg['url']:
_logger.warning("Pretrained model URL is invalid, using random initialization.")
return
if len(pretrained_model) == 0:
state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu')
else:
try:
state_dict = load_state_dict(pretrained_model)['model']
except:
state_dict = load_state_dict(pretrained_model)
if filter_fn is not None:
state_dict = filter_fn(state_dict)
if in_chans == 1:
conv1_name = cfg['first_conv']
_logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name)
conv1_weight = state_dict[conv1_name + '.weight']
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I > 3:
assert conv1_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K)
conv1_weight = conv1_weight.sum(dim=2, keepdim=False)
else:
conv1_weight = conv1_weight.sum(dim=1, keepdim=True)
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + '.weight'] = conv1_weight
elif in_chans != 3:
conv1_name = cfg['first_conv']
conv1_weight = state_dict[conv1_name + '.weight']
conv1_type = conv1_weight.dtype
conv1_weight = conv1_weight.float()
O, I, J, K = conv1_weight.shape
if I != 3:
_logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name)
del state_dict[conv1_name + '.weight']
strict = False
else:
_logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name)
repeat = int(math.ceil(in_chans / 3))
conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv1_weight *= (3 / float(in_chans))
conv1_weight = conv1_weight.to(conv1_type)
state_dict[conv1_name + '.weight'] = conv1_weight
classifier_name = cfg['classifier']
if num_classes == 1000 and cfg['num_classes'] == 1001:
# special case for imagenet trained models with extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + '.weight']
state_dict[classifier_name + '.weight'] = classifier_weight[1:]
classifier_bias = state_dict[classifier_name + '.bias']
state_dict[classifier_name + '.bias'] = classifier_bias[1:]
elif num_classes != state_dict[classifier_name + '.weight'].size(0):
#print('Removing the last fully connected layer due to dimensions mismatch ('+str(num_classes)+ ' != '+str(state_dict[classifier_name + '.weight'].size(0))+').', flush=True)
# completely discard fully connected for all other differences between pretrained and created model
del state_dict[classifier_name + '.weight']
del state_dict[classifier_name + '.bias']
strict = False
## Resizing the positional embeddings in case they don't match
if num_patches + 1 != state_dict['pos_embed'].size(1):
pos_embed = state_dict['pos_embed']
cls_pos_embed = pos_embed[0,0,:].unsqueeze(0).unsqueeze(1)
other_pos_embed = pos_embed[0,1:,:].unsqueeze(0).transpose(1, 2)
new_pos_embed = F.interpolate(other_pos_embed, size=(num_patches), mode='nearest')
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
state_dict['pos_embed'] = new_pos_embed
## Resizing time embeddings in case they don't match
if 'time_embed' in state_dict and num_frames != state_dict['time_embed'].size(1):
time_embed = state_dict['time_embed'].transpose(1, 2)
new_time_embed = F.interpolate(time_embed, size=(num_frames), mode='nearest')
state_dict['time_embed'] = new_time_embed.transpose(1, 2)
## Initializing temporal attention
if attention_type == 'divided_space_time':
new_state_dict = state_dict.copy()
for key in state_dict:
if 'blocks' in key and 'attn' in key:
new_key = key.replace('attn','temporal_attn')
if not new_key in state_dict:
new_state_dict[new_key] = state_dict[key]
else:
new_state_dict[new_key] = state_dict[new_key]
if 'blocks' in key and 'norm1' in key:
new_key = key.replace('norm1','temporal_norm1')
if not new_key in state_dict:
new_state_dict[new_key] = state_dict[key]
else:
new_state_dict[new_key] = state_dict[new_key]
state_dict = new_state_dict
## Loading the weights
model.load_state_dict(state_dict, strict=False)
def extract_layer(model, layer):
layer = layer.split('.')
module = model
if hasattr(model, 'module') and layer[0] != 'module':
module = model.module
if not hasattr(model, 'module') and layer[0] == 'module':
layer = layer[1:]
for l in layer:
if hasattr(module, l):
if not l.isdigit():
module = getattr(module, l)
else:
module = module[int(l)]
else:
return module
return module
def set_layer(model, layer, val):
layer = layer.split('.')
module = model
if hasattr(model, 'module') and layer[0] != 'module':
module = model.module
lst_index = 0
module2 = module
for l in layer:
if hasattr(module2, l):
if not l.isdigit():
module2 = getattr(module2, l)
else:
module2 = module2[int(l)]
lst_index += 1
lst_index -= 1
for l in layer[:lst_index]:
if not l.isdigit():
module = getattr(module, l)
else:
module = module[int(l)]
l = layer[lst_index]
setattr(module, l, val)
def adapt_model_from_string(parent_module, model_string):
separator = '***'
state_dict = {}
lst_shape = model_string.split(separator)
for k in lst_shape:
k = k.split(':')
key = k[0]
shape = k[1][1:-1].split(',')
if shape[0] != '':
state_dict[key] = [int(i) for i in shape]
new_module = deepcopy(parent_module)
for n, m in parent_module.named_modules():
old_module = extract_layer(parent_module, n)
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame):
if isinstance(old_module, Conv2dSame):
conv = Conv2dSame
else:
conv = nn.Conv2d
s = state_dict[n + '.weight']
in_channels = s[1]
out_channels = s[0]
g = 1
if old_module.groups > 1:
in_channels = out_channels
g = in_channels
new_conv = conv(
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size,
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation,
groups=g, stride=old_module.stride)
set_layer(new_module, n, new_conv)
if isinstance(old_module, nn.BatchNorm2d):
new_bn = nn.BatchNorm2d(
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum,
affine=old_module.affine, track_running_stats=True)
set_layer(new_module, n, new_bn)
if isinstance(old_module, nn.Linear):
num_features = state_dict[n + '.weight'][1]
new_fc = Linear(
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None)
set_layer(new_module, n, new_fc)
if hasattr(new_module, 'num_features'):
new_module.num_features = num_features
new_module.eval()
parent_module.eval()
return new_module
def adapt_model_from_file(parent_module, model_variant):
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt')
with open(adapt_file, 'r') as f:
return adapt_model_from_string(parent_module, f.read().strip())
def default_cfg_for_features(default_cfg):
default_cfg = deepcopy(default_cfg)
# remove default pretrained cfg fields that don't have much relevance for feature backbone
to_remove = ('num_classes', 'crop_pct', 'classifier') # add default final pool size?
for tr in to_remove:
default_cfg.pop(tr, None)
return default_cfg
def build_model_with_cfg(
model_cls: Callable,
variant: str,
pretrained: bool,
default_cfg: dict,
model_cfg: dict = None,
feature_cfg: dict = None,
pretrained_strict: bool = True,
pretrained_filter_fn: Callable = None,
**kwargs):
pruned = kwargs.pop('pruned', False)
features = False
feature_cfg = feature_cfg or {}
if kwargs.pop('features_only', False):
features = True
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4))
if 'out_indices' in kwargs:
feature_cfg['out_indices'] = kwargs.pop('out_indices')
model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs)
model.default_cfg = deepcopy(default_cfg)
if pruned:
model = adapt_model_from_file(model, variant)
# for classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000))
if pretrained:
load_pretrained(
model,
num_classes=num_classes_pretrained, in_chans=kwargs.get('in_chans', 3),
filter_fn=pretrained_filter_fn, strict=pretrained_strict)
if features:
feature_cls = FeatureListNet
if 'feature_cls' in feature_cfg:
feature_cls = feature_cfg.pop('feature_cls')
if isinstance(feature_cls, str):
feature_cls = feature_cls.lower()
if 'hook' in feature_cls:
feature_cls = FeatureHookNet
else:
assert False, f'Unknown feature class {feature_cls}'
model = feature_cls(model, **feature_cfg)
model.default_cfg = default_cfg_for_features(default_cfg) # add back default_cfg
return model
|