File size: 15,286 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist


from models.epalm import ePALM
from models.utils import freeze_whole_model, unfreeze_parameters, print_trainable_params_percentage

 

from transformers import AutoTokenizer


import utils



from dataset.video_caption import get_loader 

from scheduler import create_scheduler
from optim import create_optimizer
 




from models.utils import filter_state, filter_msg, exclude_list



def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config):
    # train
    model.train()  
    
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))

    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50    
    step_size = 100
    warmup_iterations = warmup_steps*step_size  
    lm_loss_weight = config.get('lm_loss_weight', 1)
    append_eos_token = config.get('append_eos_token', False)
    eos_token = tokenizer.eos_token

    config_optim = utils.AttrDict(config['optimizer'])
    prompt_lr = config_optim.prompt_lr if hasattr(config_optim, 'prompt_lr') else None

    task_prompt = config.get('task_prompt', None)

    if prompt_lr is not None:
        metric_logger.add_meter('prompt_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))


    for i, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):

        image = batch["images"].to(device,non_blocking=True)

        text = batch["sent"]

        if append_eos_token:
            text = [t.replace(eos_token, '') + eos_token for t in text]

        if task_prompt is not None:
            text = [task_prompt + ' ' + t for t in text]



        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 


        targets = text_input.input_ids.masked_fill(text_input.input_ids == tokenizer.pad_token_id, -100)
        

        answer_output = model(image=image, 
                              text=text_input, 
                              labels = targets,
                              return_dict = True,   
                              mode='train',
                              reduction='none',
                             )      
        
        loss = answer_output.loss         
        loss = loss.sum()/image.size(0)
        loss = loss*lm_loss_weight
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()    
        
        metric_logger.update(loss=loss.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        if prompt_lr is not None:
            metric_logger.update(prompt_lr=optimizer.param_groups[1]["lr"])
        if epoch==0 and i%step_size==0 and i<=warmup_iterations: 
            scheduler.step(i//step_size) 

            
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} 




@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config, max_length=30, nlgeval=None):
    model.eval()
            
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Generate Caption test result:'
    print_freq = 50
    

    predictions = []
    targets = []


    task_prompt = config.get('task_prompt', None)

    pad_token = tokenizer.pad_token
    eos_token = tokenizer.eos_token

    for n, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):        
        
        image = batch["images"].to(device,non_blocking=True)
        text = ['' for q in image]  
        if task_prompt is not None:
            text = [task_prompt + ' ' + t for t in text]
        text_input = tokenizer(text, padding='longest', return_tensors="pt").to(device) 

        out = model(image=image, text=text_input, mode='generate', return_dict=True, max_length=max_length, do_sample=True)
        out_decode = []
        for i, o in enumerate(out):
            try:

                res = tokenizer.decode(o)
                response = res.split('</s>')[1].replace(pad_token, '').replace('</s>', '').replace(eos_token, '') # skip_special_tokens=True
            except TypeError:
                print(o)
                response = ' '
                
            if task_prompt is not None:
                response = response.replace(task_prompt, '')
            out_decode.append(response)


        predictions.extend(out_decode)

        if 'targets' in batch:
            targets.extend(batch['targets'])


    evaluator = data_loader.evaluator
    eval_results = evaluator.evaluate(predictions, targets)


    wandb_log_dict = {}

    for score_name, score in eval_results.items():
        wandb_log_dict[f'Valid/{score_name}'] = score


    print(wandb_log_dict)


    return wandb_log_dict



def main(args, config):

    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True
    
    start_epoch = 0
    max_epoch = config['schedular']['epochs']
    warmup_steps = config['schedular']['warmup_epochs']
    
    print(args, config)


    tokenizer = AutoTokenizer.from_pretrained(args.text_model, use_fast=False, local_files_only=True)

    special_answer_token = config.get('special_answer_token', None)
    special_eo_answer_token = config.get('special_eo_answer_token', None)


    if special_answer_token is not None:
        special_tokens_dict = {'additional_special_tokens': [special_answer_token]}
        if special_eo_answer_token is not None:
            special_tokens_dict['additional_special_tokens'] += [special_eo_answer_token]

        tokenizer.add_special_tokens(special_tokens_dict)
        print("Adding special token:", special_tokens_dict)
        print(tokenizer)


    
    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()     
    else:
        num_tasks = None
        global_rank = None


    #########
    max_length = args.max_gen_length

    num_workers = config.get('num_workers', 4)
    train_topk = config.get('train_topk', -1)
    valid_topk = config.get('valid_topk', -1)
    data_dir = args.data_dir

    args.image_size = config.get('image_res', 224)
    args.use_data_augmentation = True 

    black_image = config.get('black_image', False)

    print("black image:", black_image)



    # video 
    args.num_frames = config.get('num_frames', 4)
    args.as_images = config.get('as_images', True)
    args.num_tries = config.get('num_tries', 1)
    args.sample_type = config.get('sample_type', 'rand')



    train_split = config.get('train_split', 'train') 
    val_split = config.get('val_split', 'val') 
    test_split = config.get('test_split', 'test') 


    train_loader = get_loader(
        args,
        split=train_split, mode='train', batch_size=config['batch_size_train'],
        distributed=args.distributed,
        workers=num_workers,
        topk=train_topk,
        data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, verbose=True, black_image=black_image
    )

    print('# len train loader:', len(train_loader))
    print(f'Building val loader')
    val_loader = get_loader(
        args,
        split=val_split, mode='val', batch_size=config['batch_size_test'],
        distributed=False, 
        workers=4,
        topk=valid_topk,data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, verbose=True, black_image=black_image
    )
    print('# len val loader:', len(val_loader))

    print(f'Building test loader')
    test_loader = get_loader(
        args,
        split=test_split, mode='val', batch_size=config['batch_size_test'],
        distributed=False, 
        workers=4,
        topk=valid_topk,data_dir=data_dir,
        local_rank=global_rank, world_size=num_tasks, verbose=True
    )


    print('# len test loader:', len(test_loader))

    #### Model #### 
    print("Creating model")
    
    start_layer_idx = config.get('start_layer_idx', 0)
    end_layer_idx = config.get('end_layer_idx', 0)

    vision_model_name = config.get('vision_model_name', args.vision_model)

    model = ePALM(opt_model_name = args.text_model, 
                   vision_model_name = vision_model_name, 
                   use_vis_prefix = True, 
                   start_layer_idx = start_layer_idx, 
                   end_layer_idx = end_layer_idx, 
                   return_hidden_state_vision = True, 
                   config=config,
    )
    
        
    model = model.to(device)   
    
    arg_opt = utils.AttrDict(config['optimizer'])
    optimizer = create_optimizer(arg_opt, model, config=config)

    if hasattr(arg_opt, 'prompt_lr') and arg_opt.prompt_lr is not None:
        print('\tInitial other params params lr: %f' % optimizer.param_groups[0]['lr'])
        print('\tInitial prompt params lr: %f' % optimizer.param_groups[1]['lr'])

    arg_sche = utils.AttrDict(config['schedular'])
    lr_scheduler, _ = create_scheduler(arg_sche, optimizer)          
         
    best_epoch = 0 
    best_valid = 0 
    

    nlgeval = None

    if args.checkpoint:    

        checkpoint = torch.load(args.checkpoint, map_location='cpu') 
        state_dict = checkpoint['model']
        msg = model.load_state_dict(state_dict,strict=False)  
        msg = filter_msg(msg, exclude_list)
        print('load checkpoint from %s'%args.checkpoint)
        print(msg)  
        if 'best_valid' in checkpoint:
            print("load best valid {} at epoch {}".format(checkpoint['best_valid'] , checkpoint['best_epoch'] ))

        if args.resume:
            model = model.to(device) 
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            start_epoch = checkpoint['epoch']+1  
            print(checkpoint.keys())
            if 'best_valid' in checkpoint:
                best_valid = checkpoint['best_valid'] 
                best_epoch = checkpoint['best_epoch'] 
                print("load best valid {} at epoch {}".format(best_valid, best_epoch))

    
    freeze_whole_model(model)
    unfreeze_parameters(model, config)
    print_trainable_params_percentage(model)
    
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module    
    
    
    print("Start training")
    start_time = time.time()


    for epoch in range(start_epoch, max_epoch):
        if epoch>0:
            lr_scheduler.step(epoch+warmup_steps)  
        
        if not args.evaluate:
            if args.distributed:
                train_loader.sampler.set_epoch(epoch)

            train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config)  

        if args.evaluate:
            break
            

        valid_results = evaluation(model, val_loader, tokenizer, device, config, max_length=max_length, nlgeval=nlgeval) 

        if utils.is_main_process():               
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                         'epoch': epoch,
                        }                
            with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                f.write(json.dumps(log_stats) + "\n")                        
                    
            save_obj = {
                'model': filter_state(model_without_ddp.state_dict(), exclude_list),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
                'config': config,
                'epoch': epoch,
                'best_valid': best_valid,
                'best_epoch': best_epoch,
            }

            if args.save_best:
                valid_score = valid_results['Valid/CIDEr']

                if valid_score > best_valid or epoch == 0:
                    best_valid = valid_score
                    best_epoch = epoch
                    print("Save best epoch:", best_epoch)

                    save_obj['best_valid'] = best_valid
                    save_obj['best_epoch'] = best_epoch

                    torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))  
            torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_last.pth'))  


        dist.barrier()   
    




    if not args.evaluate:
        checkpoint = torch.load(os.path.join(args.output_dir, 'checkpoint_best.pth'), map_location='cpu') 
        state_dict = checkpoint['model']   
        msg = model.module.load_state_dict(state_dict,strict=False)  
        msg = filter_msg(msg, exclude_list)
        print('load checkpoint for test from %s'%args.checkpoint)
        print(msg)
    vqa_result = evaluation(model, test_loader, tokenizer, device, config, max_length=max_length, nlgeval=nlgeval)    

                     
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str)) 
    
            

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', default='./configs/VQA.yaml') 
    parser.add_argument('--checkpoint', default='') 
    parser.add_argument('--output_dir', default='output/vqa')
    parser.add_argument('--evaluate', action='store_true')    
    parser.add_argument('--text_model', default='facebook/opt-350m')
    parser.add_argument('--vision_model', default='vit_base_patch16_224')
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')    
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=True, type=bool)
    
    parser.add_argument('--data_dir', default='/data/mshukor/data')   
    parser.add_argument('--resume', action='store_true')    

    parser.add_argument('--save_best', action='store_true') 
    
    parser.add_argument('--image_dir', default='/data/mshukor/data')   
    parser.add_argument('--max_gen_length', default=30, type=int, help='max_gen_length')    

    

    args = parser.parse_args()

    config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)

    args.result_dir = os.path.join(args.output_dir, 'result')

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    Path(args.result_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))    
    
    main(args, config)