File size: 6,908 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# https://github.com/salesforce/ALBEF

import re

def pre_question(question,max_ques_words):
    question = re.sub(
        r"([,.'!?\"()*#:;~])",
        '',
        question.lower(),
    ).replace('-', ' ').replace('/', ' ')  
    question = question.rstrip(' ')
    
    #truncate question
    question_words = question.split(' ')
    if len(question_words)>max_ques_words:
        question = ' '.join(question_words[:max_ques_words])
            
    return question


def pre_caption(caption,max_words):
    caption = re.sub(
        r"([,.'!?\"()*#:;~])",
        '',
        caption.lower(),
    ).replace('-', ' ').replace('/', ' ').replace('<person>', 'person')

    caption = re.sub(
        r"\s{2,}",
        ' ',
        caption,
    )
    caption = caption.rstrip('\n') 
    caption = caption.strip(' ')

    #truncate caption
    caption_words = caption.split(' ')
    if len(caption_words)>max_words:
        caption = ' '.join(caption_words[:max_words])
            
    return caption


from vqaTools.vqaEval import VQAEval
from refTools.evaluation.refEvaluation import RefEvaluation

import json
import os
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F

import utils
from tqdm import tqdm


def vqa_eval(vqa, result_file, test_ques_path):
    vqaRes = vqa.loadRes(result_file, test_ques_path)
    # create vqaEval object by taking vqa and vqaRes
    vqaEval = VQAEval(vqa, vqaRes, n=2)  # n is precision of accuracy (number of places after decimal), default is 2
    # evaluate results
    vqaEval.evaluate()   

    # print accuracies
    print("\n")
    print("Overall Accuracy is: %.02f\n" % (vqaEval.accuracy['overall']))
    print("Per Answer Type Accuracy is the following:")
    for ansType in vqaEval.accuracy['perAnswerType']:
        print("%s : %.02f" % (ansType, vqaEval.accuracy['perAnswerType'][ansType]))
    print("\n")    
    
    return vqaEval


    
def collect_result(result, result_dir, filename, is_json=True, is_list=True):
    if is_json:
        result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
        final_result_file = os.path.join(result_dir, '%s.json'%filename)
        json.dump(result,open(result_file,'w'))
    else:
        result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,utils.get_rank()))
        final_result_file = os.path.join(result_dir, '%s.pth'%filename)
        torch.save(result,result_file)     
        
    dist.barrier()
    
    result = None
    if utils.is_main_process():   
        # combine results from all processes
        if is_list:
            result = []
        else:
            result = {}
        for rank in range(utils.get_world_size()):
            if is_json:
                result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
                res = json.load(open(result_file,'r'))
            else:
                result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,rank))
                res = torch.load(result_file)            
            if is_list:
                result += res
            else:
                result.update(res) 
      
    return result    

    
def save_result(result, result_dir, filename, is_json=True, is_list=True):
    if is_json:
        result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,utils.get_rank()))
        final_result_file = os.path.join(result_dir, '%s.json'%filename)
        json.dump(result,open(result_file,'w'))
    else:
        result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,utils.get_rank()))
        final_result_file = os.path.join(result_dir, '%s.pth'%filename)
        torch.save(result,result_file)     
        
    dist.barrier()

    if utils.is_main_process():   
        # combine results from all processes
        if is_list:
            result = []
        else:
            result = {}
        for rank in range(utils.get_world_size()):
            if is_json:
                result_file = os.path.join(result_dir, '%s_rank%d.json'%(filename,rank))
                res = json.load(open(result_file,'r'))
            else:
                result_file = os.path.join(result_dir, '%s_rank%d.pth'%(filename,rank))
                res = torch.load(result_file)            
            if is_list:
                result += res
            else:
                result.update(res)
        if is_json:                  
            json.dump(result,open(final_result_file,'w'))   
        else:            
            torch.save(result,final_result_file)     
        
        print('result file saved to %s'%final_result_file)
    dist.barrier()        
    return final_result_file

 

def grounding_eval(results,dets,cocos,refer,alpha,mask_size=24):
    
    correct_A_d, correct_B_d, correct_val_d = 0, 0, 0
    correct_A, correct_B, correct_val = 0, 0, 0 
    num_A,num_B,num_val = 0,0,0
    
    for res in tqdm(results):

        ref_id = res['ref_id']
        ref = refer.Refs[ref_id]
        ref_box = refer.refToAnn[ref_id]['bbox']
        image = refer.Imgs[ref['image_id']]

        mask = res['pred'].cuda().view(1,1,mask_size,mask_size)    
        mask = F.interpolate(mask,size = (image['height'],image['width']), mode='bicubic').squeeze()
        
        # rank detection boxes
        max_score = 0
        for det in dets[str(ref['image_id'])]:
            score = mask[int(det[1]):int(det[1]+det[3]),int(det[0]):int(det[0]+det[2])]
            area = det[2]*det[3]
            score = score.sum() / area**alpha
            if score>max_score:
                pred_box = det[:4]
                max_score = score    

        IoU_det = computeIoU(ref_box, pred_box)
        
        if ref['split']=='testA':
            num_A += 1    
            if IoU_det >= 0.5:   
                correct_A_d += 1            
        elif ref['split']=='testB':
            num_B += 1    
            if IoU_det >= 0.5:   
                correct_B_d += 1    
        elif ref['split']=='val':
            num_val += 1    
            if IoU_det >= 0.5:   
                correct_val_d += 1    
                
    eval_result = {'val_d':correct_val_d/num_val,'testA_d':correct_A_d/num_A,'testB_d':correct_B_d/num_B}        
    
    for metric, acc in eval_result.items():
        print(f'{metric}: {acc:.3f}')
        
    return eval_result    



# IoU function
def computeIoU(box1, box2):
    # each box is of [x1, y1, w, h]
    inter_x1 = max(box1[0], box2[0])
    inter_y1 = max(box1[1], box2[1])
    inter_x2 = min(box1[0]+box1[2]-1, box2[0]+box2[2]-1)
    inter_y2 = min(box1[1]+box1[3]-1, box2[1]+box2[3]-1)

    if inter_x1 < inter_x2 and inter_y1 < inter_y2:
        inter = (inter_x2-inter_x1+1)*(inter_y2-inter_y1+1)
    else:
        inter = 0
    union = box1[2]*box1[3] + box2[2]*box2[3] - inter
    return float(inter)/union