File size: 8,750 Bytes
3eb682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
""" Optimizer Factory w/ Custom Weight Decay
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
from torch import optim as optim
from .adafactor import Adafactor
from .adahessian import Adahessian
from .adamp import AdamP
from .lookahead import Lookahead
from .nadam import Nadam
from .novograd import NovoGrad
from .nvnovograd import NvNovoGrad
from .radam import RAdam
from .rmsprop_tf import RMSpropTF
from .sgdp import SGDP
try:
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
has_apex = True
except ImportError:
has_apex = False
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
def create_optimizer(args, model, filter_bias_and_bn=True, config=None):
opt_lower = args.opt.lower()
weight_decay = args.weight_decay
customized_lr = config.get('customized_lr', False)
prompt_lr = config.get('prompt_lr', args.lr)
vis_lr = config.get('vis_lr', args.lr)
text_lr = config.get('text_lr', args.lr)
connector_lr = config.get('connector_lr', args.lr)
adapter_lr = config.get('adapter_lr', args.lr)
if customized_lr:
parameters = []
targets = ['connector', 'model_vision', 'model_text', 'prompt']
# if prompt_lr is not None:
# targets.append('prompt')
# promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0].split('.')[0]]
# parameters.append({'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay})
params = {'connector': [], 'model_vision': [], 'model_text': [], 'prompt': [], 'other': []}
for kv in model.named_parameters():
if 'connector' in kv[0].split('.')[0]:
params['connector'].append(kv[1])
elif 'model_vision' in kv[0].split('.')[0]:
params['model_vision'].append(kv[1])
elif 'model_text' in kv[0].split('.')[0]:
params['model_text'].append(kv[1])
elif 'prompt' in kv[0].split('.')[0]:
params['prompt'].append(kv[1])
else:
params['other'].append(kv[1])
# connector_params = [kv[1] for kv in model.named_parameters() if 'connector' in kv[0].split('.')[0]]
parameters.append({'params': params['connector'], 'lr': connector_lr, 'weight_decay': weight_decay})
print('connector', len(params['connector']))
# model_vision_params = [kv[1] for kv in model.named_parameters() if 'model_vision' in kv[0].split('.')[0]]
parameters.append({'params': params['model_vision'], 'lr': vis_lr, 'weight_decay': weight_decay})
print('model_vision', len(params['model_vision']))
# model_text_params = [kv[1] for kv in model.named_parameters() if 'model_text' in kv[0].split('.')[0]]
parameters.append({'params': params['model_text'], 'lr': text_lr, 'weight_decay': weight_decay})
print('model_text', len(params['model_text']))
parameters.append({'params': params['prompt'], 'lr': prompt_lr, 'weight_decay': weight_decay})
print('prompt_lr', len(params['prompt']))
# other_params = [kv[1] for kv in model.named_parameters() if any(t in kv[0].split('.')[0] for t in targets)]
parameters.append({'params': params['other']})
print('other', len(params['other']))
print(connector_lr, vis_lr, text_lr, prompt_lr, "optim")
elif config.get('adapter_lr', False) and config.get('prompt_lr', False):
adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]]
promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]]
other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0] and 'prompt' not in kv[0]]
parameters = [
{'params': other_params},
{'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay},
{'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay}
]
elif config.get('adapter_lr', False):
adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]]
other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0]]
parameters = [
{'params': other_params},
{'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay}
]
elif config.get('prompt_lr', False):
promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]]
other_params = [kv[1] for kv in model.named_parameters() if 'prompt' not in kv[0]]
parameters = [
{'params': other_params},
{'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay}
]
elif weight_decay and filter_bias_and_bn:
skip = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
parameters = add_weight_decay(model, weight_decay, skip)
weight_decay = 0.
else:
parameters = model.parameters()
if 'fused' in opt_lower:
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'
opt_args = dict(lr=args.lr, weight_decay=weight_decay)
if hasattr(args, 'opt_eps') and args.opt_eps is not None:
opt_args['eps'] = args.opt_eps
if hasattr(args, 'opt_betas') and args.opt_betas is not None:
opt_args['betas'] = args.opt_betas
if hasattr(args, 'opt_args') and args.opt_args is not None:
opt_args.update(args.opt_args)
opt_split = opt_lower.split('_')
opt_lower = opt_split[-1]
if opt_lower == 'sgd' or opt_lower == 'nesterov':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
elif opt_lower == 'momentum':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
elif opt_lower == 'adam':
optimizer = optim.Adam(parameters, **opt_args)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, **opt_args)
elif opt_lower == 'nadam':
optimizer = Nadam(parameters, **opt_args)
elif opt_lower == 'radam':
optimizer = RAdam(parameters, **opt_args)
elif opt_lower == 'adamp':
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
elif opt_lower == 'sgdp':
optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args)
elif opt_lower == 'adadelta':
optimizer = optim.Adadelta(parameters, **opt_args)
elif opt_lower == 'adafactor':
if not args.lr:
opt_args['lr'] = None
optimizer = Adafactor(parameters, **opt_args)
elif opt_lower == 'adahessian':
optimizer = Adahessian(parameters, **opt_args)
elif opt_lower == 'rmsprop':
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
elif opt_lower == 'rmsproptf':
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
elif opt_lower == 'novograd':
optimizer = NovoGrad(parameters, **opt_args)
elif opt_lower == 'nvnovograd':
optimizer = NvNovoGrad(parameters, **opt_args)
elif opt_lower == 'fusedsgd':
opt_args.pop('eps', None)
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
elif opt_lower == 'fusedmomentum':
opt_args.pop('eps', None)
optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
elif opt_lower == 'fusedadam':
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
elif opt_lower == 'fusedadamw':
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args)
elif opt_lower == 'fusedlamb':
optimizer = FusedLAMB(parameters, **opt_args)
elif opt_lower == 'fusednovograd':
opt_args.setdefault('betas', (0.95, 0.98))
optimizer = FusedNovoGrad(parameters, **opt_args)
else:
assert False and "Invalid optimizer"
raise ValueError
if len(opt_split) > 1:
if opt_split[0] == 'lookahead':
optimizer = Lookahead(optimizer)
return optimizer
|