File size: 8,750 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
""" Optimizer Factory w/ Custom Weight Decay
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
from torch import optim as optim

from .adafactor import Adafactor
from .adahessian import Adahessian
from .adamp import AdamP
from .lookahead import Lookahead
from .nadam import Nadam
from .novograd import NovoGrad
from .nvnovograd import NvNovoGrad
from .radam import RAdam
from .rmsprop_tf import RMSpropTF
from .sgdp import SGDP

try:
    from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD
    has_apex = True
except ImportError:
    has_apex = False


def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
    decay = []
    no_decay = []
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
            no_decay.append(param)
        else:
            decay.append(param)
    return [
        {'params': no_decay, 'weight_decay': 0.},
        {'params': decay, 'weight_decay': weight_decay}]


def create_optimizer(args, model, filter_bias_and_bn=True, config=None):
    opt_lower = args.opt.lower()
    weight_decay = args.weight_decay

    customized_lr = config.get('customized_lr', False) 
    prompt_lr = config.get('prompt_lr', args.lr) 
    vis_lr = config.get('vis_lr', args.lr)  
    text_lr = config.get('text_lr', args.lr)  
    connector_lr = config.get('connector_lr', args.lr)  
    adapter_lr = config.get('adapter_lr', args.lr)  
    
    if customized_lr:
        parameters = []
        targets = ['connector', 'model_vision', 'model_text', 'prompt']
        # if prompt_lr is not None:
        #     targets.append('prompt')
        #     promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0].split('.')[0]]
        #     parameters.append({'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay})

        params = {'connector': [], 'model_vision': [], 'model_text': [], 'prompt': [], 'other': []}
        for kv in model.named_parameters():
            if 'connector' in kv[0].split('.')[0]:
                params['connector'].append(kv[1])
            elif 'model_vision' in kv[0].split('.')[0]:
                params['model_vision'].append(kv[1])
            elif 'model_text' in kv[0].split('.')[0]:
                params['model_text'].append(kv[1])
            elif 'prompt' in kv[0].split('.')[0]:
                params['prompt'].append(kv[1])
            else:
                params['other'].append(kv[1])

        # connector_params = [kv[1] for kv in model.named_parameters() if 'connector' in kv[0].split('.')[0]]
        parameters.append({'params': params['connector'], 'lr': connector_lr, 'weight_decay': weight_decay})
        print('connector', len(params['connector']))

        # model_vision_params = [kv[1] for kv in model.named_parameters() if 'model_vision' in kv[0].split('.')[0]]
        parameters.append({'params': params['model_vision'], 'lr': vis_lr, 'weight_decay': weight_decay})
        print('model_vision', len(params['model_vision']))

        # model_text_params = [kv[1] for kv in model.named_parameters() if 'model_text' in kv[0].split('.')[0]]
        parameters.append({'params': params['model_text'], 'lr': text_lr, 'weight_decay': weight_decay})
        print('model_text', len(params['model_text']))

        parameters.append({'params': params['prompt'], 'lr': prompt_lr, 'weight_decay': weight_decay})
        print('prompt_lr', len(params['prompt']))

        # other_params = [kv[1] for kv in model.named_parameters() if any(t in kv[0].split('.')[0] for t in targets)]
        parameters.append({'params': params['other']})
        print('other', len(params['other']))
        print(connector_lr, vis_lr, text_lr, prompt_lr, "optim")
        
    elif config.get('adapter_lr', False) and config.get('prompt_lr', False):
        adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]]
        promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]]

        other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0] and 'prompt' not in kv[0]]
        parameters = [
        {'params': other_params}, 
        {'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay},
        {'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay}
        ] 

    elif config.get('adapter_lr', False):
        adapter_params = [kv[1] for kv in model.named_parameters() if 'adapter' in kv[0]]
        other_params = [kv[1] for kv in model.named_parameters() if 'adapter' not in kv[0]]
        parameters = [
        {'params': other_params}, 
        {'params': adapter_params, 'lr': adapter_lr, 'weight_decay': weight_decay}
        ]      

    elif config.get('prompt_lr', False):
        promt_params = [kv[1] for kv in model.named_parameters() if 'prompt' in kv[0]]
        other_params = [kv[1] for kv in model.named_parameters() if 'prompt' not in kv[0]]
        parameters = [
        {'params': other_params}, 
        {'params': promt_params, 'lr': prompt_lr, 'weight_decay': weight_decay}
        ]
    elif weight_decay and filter_bias_and_bn:
        skip = {}
        if hasattr(model, 'no_weight_decay'):
            skip = model.no_weight_decay()
        parameters = add_weight_decay(model, weight_decay, skip)
        weight_decay = 0.
    else:
        parameters = model.parameters()

    if 'fused' in opt_lower:
        assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'

    opt_args = dict(lr=args.lr, weight_decay=weight_decay)
    if hasattr(args, 'opt_eps') and args.opt_eps is not None:
        opt_args['eps'] = args.opt_eps
    if hasattr(args, 'opt_betas') and args.opt_betas is not None:
        opt_args['betas'] = args.opt_betas
    if hasattr(args, 'opt_args') and args.opt_args is not None:
        opt_args.update(args.opt_args)

    opt_split = opt_lower.split('_')
    opt_lower = opt_split[-1]
    if opt_lower == 'sgd' or opt_lower == 'nesterov':
        opt_args.pop('eps', None)
        optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
    elif opt_lower == 'momentum':
        opt_args.pop('eps', None)
        optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
    elif opt_lower == 'adam':
        optimizer = optim.Adam(parameters, **opt_args)
    elif opt_lower == 'adamw':
        optimizer = optim.AdamW(parameters, **opt_args)
    elif opt_lower == 'nadam':
        optimizer = Nadam(parameters, **opt_args)
    elif opt_lower == 'radam':
        optimizer = RAdam(parameters, **opt_args)
    elif opt_lower == 'adamp':        
        optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
    elif opt_lower == 'sgdp':        
        optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args)
    elif opt_lower == 'adadelta':
        optimizer = optim.Adadelta(parameters, **opt_args)
    elif opt_lower == 'adafactor':
        if not args.lr:
            opt_args['lr'] = None
        optimizer = Adafactor(parameters, **opt_args)
    elif opt_lower == 'adahessian':
        optimizer = Adahessian(parameters, **opt_args)
    elif opt_lower == 'rmsprop':
        optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
    elif opt_lower == 'rmsproptf':
        optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
    elif opt_lower == 'novograd':
        optimizer = NovoGrad(parameters, **opt_args)
    elif opt_lower == 'nvnovograd':
        optimizer = NvNovoGrad(parameters, **opt_args)
    elif opt_lower == 'fusedsgd':
        opt_args.pop('eps', None)
        optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
    elif opt_lower == 'fusedmomentum':
        opt_args.pop('eps', None)
        optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
    elif opt_lower == 'fusedadam':
        optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
    elif opt_lower == 'fusedadamw':
        optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args)
    elif opt_lower == 'fusedlamb':
        optimizer = FusedLAMB(parameters, **opt_args)
    elif opt_lower == 'fusednovograd':
        opt_args.setdefault('betas', (0.95, 0.98))
        optimizer = FusedNovoGrad(parameters, **opt_args)
    else:
        assert False and "Invalid optimizer"
        raise ValueError

    if len(opt_split) > 1:
        if opt_split[0] == 'lookahead':
            optimizer = Lookahead(optimizer)

    return optimizer