File size: 18,339 Bytes
3eb682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

"""Train a video classification model."""

import numpy as np
import pprint
import torch
from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats

import timesformer.models.losses as losses
import timesformer.models.optimizer as optim
import timesformer.utils.checkpoint as cu
import timesformer.utils.distributed as du
import timesformer.utils.logging as logging
import timesformer.utils.metrics as metrics
import timesformer.utils.misc as misc
import timesformer.visualization.tensorboard_vis as tb
from timesformer.datasets import loader
from timesformer.models import build_model
from timesformer.utils.meters import TrainMeter, ValMeter
from timesformer.utils.multigrid import MultigridSchedule

from timm.data import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy

logger = logging.get_logger(__name__)


def train_epoch(
    train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer=None
):
    """
    Perform the video training for one epoch.
    Args:
        train_loader (loader): video training loader.
        model (model): the video model to train.
        optimizer (optim): the optimizer to perform optimization on the model's
            parameters.
        train_meter (TrainMeter): training meters to log the training performance.
        cur_epoch (int): current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """
    # Enable train mode.
    model.train()
    train_meter.iter_tic()
    data_size = len(train_loader)

    cur_global_batch_size = cfg.NUM_SHARDS * cfg.TRAIN.BATCH_SIZE
    num_iters = cfg.GLOBAL_BATCH_SIZE // cur_global_batch_size

    for cur_iter, (inputs, labels, _, meta) in enumerate(train_loader):
        # Transfer the data to the current GPU device.
        if cfg.NUM_GPUS:
            if isinstance(inputs, (list,)):
                for i in range(len(inputs)):
                    inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            labels = labels.cuda()
            for key, val in meta.items():
                if isinstance(val, (list,)):
                    for i in range(len(val)):
                        val[i] = val[i].cuda(non_blocking=True)
                else:
                    meta[key] = val.cuda(non_blocking=True)

        # Update the learning rate.
        lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg)
        optim.set_lr(optimizer, lr)

        train_meter.data_toc()

        # Explicitly declare reduction to mean.
        if not cfg.MIXUP.ENABLED:
           loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean")
        else:
           mixup_fn = Mixup(
               mixup_alpha=cfg.MIXUP.ALPHA, cutmix_alpha=cfg.MIXUP.CUTMIX_ALPHA, cutmix_minmax=cfg.MIXUP.CUTMIX_MINMAX, prob=cfg.MIXUP.PROB, switch_prob=cfg.MIXUP.SWITCH_PROB, mode=cfg.MIXUP.MODE,
               label_smoothing=0.1, num_classes=cfg.MODEL.NUM_CLASSES)
           hard_labels = labels
           inputs, labels = mixup_fn(inputs, labels)
           loss_fun = SoftTargetCrossEntropy()

        if cfg.DETECTION.ENABLE:
            preds = model(inputs, meta["boxes"])
        else:
            preds = model(inputs)

        # Compute the loss.
        loss = loss_fun(preds, labels)

        if cfg.MIXUP.ENABLED:
            labels = hard_labels

        # check Nan Loss.
        misc.check_nan_losses(loss)


        if cur_global_batch_size >= cfg.GLOBAL_BATCH_SIZE:
            # Perform the backward pass.
            optimizer.zero_grad()
            loss.backward()
            # Update the parameters.
            optimizer.step()
        else:
            if cur_iter == 0:
                optimizer.zero_grad()
            loss.backward()
            if (cur_iter + 1) % num_iters == 0:
                for p in model.parameters():
                    p.grad /= num_iters
                optimizer.step()
                optimizer.zero_grad()

        if cfg.DETECTION.ENABLE:
            if cfg.NUM_GPUS > 1:
                loss = du.all_reduce([loss])[0]
            loss = loss.item()

            # Update and log stats.
            train_meter.update_stats(None, None, None, loss, lr)
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {"Train/loss": loss, "Train/lr": lr},
                    global_step=data_size * cur_epoch + cur_iter,
                )

        else:
            top1_err, top5_err = None, None
            if cfg.DATA.MULTI_LABEL:
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    [loss] = du.all_reduce([loss])
                loss = loss.item()
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(preds, labels, (1, 5))
                top1_err, top5_err = [
                    (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct
                ]
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss, top1_err, top5_err = du.all_reduce(
                        [loss, top1_err, top5_err]
                    )

                # Copy the stats from GPU to CPU (sync point).
                loss, top1_err, top5_err = (
                    loss.item(),
                    top1_err.item(),
                    top5_err.item(),
                )

            # Update and log stats.
            train_meter.update_stats(
                top1_err,
                top5_err,
                loss,
                lr,
                inputs[0].size(0)
                * max(
                    cfg.NUM_GPUS, 1
                ),  # If running  on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
            )
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {
                        "Train/loss": loss,
                        "Train/lr": lr,
                        "Train/Top1_err": top1_err,
                        "Train/Top5_err": top5_err,
                    },
                    global_step=data_size * cur_epoch + cur_iter,
                )

        train_meter.iter_toc()  # measure allreduce for this meter
        train_meter.log_iter_stats(cur_epoch, cur_iter)
        train_meter.iter_tic()

    # Log epoch stats.
    train_meter.log_epoch_stats(cur_epoch)
    train_meter.reset()


@torch.no_grad()
def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer=None):
    """
    Evaluate the model on the val set.
    Args:
        val_loader (loader): data loader to provide validation data.
        model (model): model to evaluate the performance.
        val_meter (ValMeter): meter instance to record and calculate the metrics.
        cur_epoch (int): number of the current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """

    # Evaluation mode enabled. The running stats would not be updated.
    model.eval()
    val_meter.iter_tic()

    for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader):
        if cfg.NUM_GPUS:
            # Transferthe data to the current GPU device.
            if isinstance(inputs, (list,)):
                for i in range(len(inputs)):
                    inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            labels = labels.cuda()
            for key, val in meta.items():
                if isinstance(val, (list,)):
                    for i in range(len(val)):
                        val[i] = val[i].cuda(non_blocking=True)
                else:
                    meta[key] = val.cuda(non_blocking=True)
        val_meter.data_toc()

        if cfg.DETECTION.ENABLE:
            # Compute the predictions.
            preds = model(inputs, meta["boxes"])
            ori_boxes = meta["ori_boxes"]
            metadata = meta["metadata"]

            if cfg.NUM_GPUS:
                preds = preds.cpu()
                ori_boxes = ori_boxes.cpu()
                metadata = metadata.cpu()

            if cfg.NUM_GPUS > 1:
                preds = torch.cat(du.all_gather_unaligned(preds), dim=0)
                ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes), dim=0)
                metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0)

            val_meter.iter_toc()
            # Update and log stats.
            val_meter.update_stats(preds, ori_boxes, metadata)

        else:
            preds = model(inputs)

            if cfg.DATA.MULTI_LABEL:
                if cfg.NUM_GPUS > 1:
                    preds, labels = du.all_gather([preds, labels])
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(preds, labels, (1, 5))

                # Combine the errors across the GPUs.
                top1_err, top5_err = [
                    (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct
                ]
                if cfg.NUM_GPUS > 1:
                    top1_err, top5_err = du.all_reduce([top1_err, top5_err])

                # Copy the errors from GPU to CPU (sync point).
                top1_err, top5_err = top1_err.item(), top5_err.item()

                val_meter.iter_toc()
                # Update and log stats.
                val_meter.update_stats(
                    top1_err,
                    top5_err,
                    inputs[0].size(0)
                    * max(
                        cfg.NUM_GPUS, 1
                    ),  # If running  on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
                )
                # write to tensorboard format if available.
                if writer is not None:
                    writer.add_scalars(
                        {"Val/Top1_err": top1_err, "Val/Top5_err": top5_err},
                        global_step=len(val_loader) * cur_epoch + cur_iter,
                    )

            val_meter.update_predictions(preds, labels)

        val_meter.log_iter_stats(cur_epoch, cur_iter)
        val_meter.iter_tic()

    # Log epoch stats.
    val_meter.log_epoch_stats(cur_epoch)
    # write to tensorboard format if available.
    if writer is not None:
        if cfg.DETECTION.ENABLE:
            writer.add_scalars(
                {"Val/mAP": val_meter.full_map}, global_step=cur_epoch
            )
        else:
            all_preds = [pred.clone().detach() for pred in val_meter.all_preds]
            all_labels = [
                label.clone().detach() for label in val_meter.all_labels
            ]
            if cfg.NUM_GPUS:
                all_preds = [pred.cpu() for pred in all_preds]
                all_labels = [label.cpu() for label in all_labels]
            writer.plot_eval(
                preds=all_preds, labels=all_labels, global_step=cur_epoch
            )

    val_meter.reset()


def calculate_and_update_precise_bn(loader, model, num_iters=200, use_gpu=True):
    """
    Update the stats in bn layers by calculate the precise stats.
    Args:
        loader (loader): data loader to provide training data.
        model (model): model to update the bn stats.
        num_iters (int): number of iterations to compute and update the bn stats.
        use_gpu (bool): whether to use GPU or not.
    """

    def _gen_loader():
        for inputs, *_ in loader:
            if use_gpu:
                if isinstance(inputs, (list,)):
                    for i in range(len(inputs)):
                        inputs[i] = inputs[i].cuda(non_blocking=True)
                else:
                    inputs = inputs.cuda(non_blocking=True)
            yield inputs

    # Update the bn stats.
    update_bn_stats(model, _gen_loader(), num_iters)


def build_trainer(cfg):
    """
    Build training model and its associated tools, including optimizer,
    dataloaders and meters.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    Returns:
        model (nn.Module): training model.
        optimizer (Optimizer): optimizer.
        train_loader (DataLoader): training data loader.
        val_loader (DataLoader): validatoin data loader.
        precise_bn_loader (DataLoader): training data loader for computing
            precise BN.
        train_meter (TrainMeter): tool for measuring training stats.
        val_meter (ValMeter): tool for measuring validation stats.
    """
    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")

    precise_bn_loader = loader.construct_loader(
        cfg, "train", is_precise_bn=True
    )
    # Create meters.
    train_meter = TrainMeter(len(train_loader), cfg)
    val_meter = ValMeter(len(val_loader), cfg)

    return (
        model,
        optimizer,
        train_loader,
        val_loader,
        precise_bn_loader,
        train_meter,
        val_meter,
    )


def train(cfg):
    """
    Train a video model for many epochs on train set and evaluate it on val set.
    Args:
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Set up environment.
    du.init_distributed_training(cfg)
    # Set random seed from configs.
    np.random.seed(cfg.RNG_SEED)
    torch.manual_seed(cfg.RNG_SEED)

    # Setup logging format.
    logging.setup_logging(cfg.OUTPUT_DIR)

    # Init multigrid.
    multigrid = None
    if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE:
        multigrid = MultigridSchedule()
        cfg = multigrid.init_multigrid(cfg)
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0)
    # Print config.
    logger.info("Train with config:")
    logger.info(pprint.pformat(cfg))

    # Build the video model and print model statistics.
    model = build_model(cfg)
    if du.is_master_proc() and cfg.LOG_MODEL_INFO:
        misc.log_model_info(model, cfg, use_train_input=True)

    # Construct the optimizer.
    optimizer = optim.construct_optimizer(model, cfg)

    # Load a checkpoint to resume training if applicable.
    if not cfg.TRAIN.FINETUNE:
      start_epoch = cu.load_train_checkpoint(cfg, model, optimizer)
    else:
      start_epoch = 0
      cu.load_checkpoint(cfg.TRAIN.CHECKPOINT_FILE_PATH, model)

    # Create the video train and val loaders.
    train_loader = loader.construct_loader(cfg, "train")
    val_loader = loader.construct_loader(cfg, "val")

    precise_bn_loader = (
        loader.construct_loader(cfg, "train", is_precise_bn=True)
        if cfg.BN.USE_PRECISE_STATS
        else None
    )

    train_meter = TrainMeter(len(train_loader), cfg)
    val_meter = ValMeter(len(val_loader), cfg)

    # set up writer for logging to Tensorboard format.
    if cfg.TENSORBOARD.ENABLE and du.is_master_proc(
        cfg.NUM_GPUS * cfg.NUM_SHARDS
    ):
        writer = tb.TensorboardWriter(cfg)
    else:
        writer = None

    # Perform the training loop.
    logger.info("Start epoch: {}".format(start_epoch + 1))

    for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
        if cfg.MULTIGRID.LONG_CYCLE:
            cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch)
            if changed:
                (
                    model,
                    optimizer,
                    train_loader,
                    val_loader,
                    precise_bn_loader,
                    train_meter,
                    val_meter,
                ) = build_trainer(cfg)

                # Load checkpoint.
                if cu.has_checkpoint(cfg.OUTPUT_DIR):
                    last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
                    assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint
                else:
                    last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH
                logger.info("Load from {}".format(last_checkpoint))
                cu.load_checkpoint(
                    last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer
                )

        # Shuffle the dataset.
        loader.shuffle_dataset(train_loader, cur_epoch)

        # Train for one epoch.
        train_epoch(
            train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer
        )

        is_checkp_epoch = cu.is_checkpoint_epoch(
            cfg,
            cur_epoch,
            None if multigrid is None else multigrid.schedule,
        )
        is_eval_epoch = misc.is_eval_epoch(
            cfg, cur_epoch, None if multigrid is None else multigrid.schedule
        )

        # Compute precise BN stats.
        if (
            (is_checkp_epoch or is_eval_epoch)
            and cfg.BN.USE_PRECISE_STATS
            and len(get_bn_modules(model)) > 0
        ):
            calculate_and_update_precise_bn(
                precise_bn_loader,
                model,
                min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)),
                cfg.NUM_GPUS > 0,
            )
        _ = misc.aggregate_sub_bn_stats(model)

        # Save a checkpoint.
        if is_checkp_epoch:
            cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, cfg)
        # Evaluate the model on validation set.
        if is_eval_epoch:
            eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer)

    if writer is not None:
        writer.close()