Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,777 Bytes
84bfd88 02327b3 84bfd88 c07eff0 84bfd88 c07eff0 84bfd88 4f0db87 84bfd88 4f0db87 84bfd88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import torch
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
from torch import nn
import numpy as np
from typing import *
from datetime import datetime
import os
import pickle
import inspect
from tqdm.auto import trange
import spaces
from model.base_model import BaseModel
class BarlowTwins(BaseModel):
def __init__(
self,
n_bits: int = 1024,
aa_emb_size: int = 1024,
enc_n_neurons: int = 512,
enc_n_layers: int = 2,
proj_n_neurons: int = 2048,
proj_n_layers: int = 2,
embedding_dim: int = 512,
act_function: str = "relu",
loss_weight: float = 0.005,
batch_size: int = 512,
optimizer: str = "adamw",
momentum: float = 0.9,
learning_rate: float = 0.0001,
betas: tuple = (0.9, 0.999),
weight_decay: float = 1e-3,
step_size: int = 10,
gamma: float = 0.1,
verbose: bool = True,
):
super().__init__()
self.enc_aa = None
self.enc_mol = None
self.proj = None
self.scheduler = None
self.optimizer = None
# store input in dict
self.param_dict = {
"act_function": self.activation_dict[
act_function
], # which activation function to use among dict options
"loss_weight": loss_weight, # off-diagonal cross correlation loss weight
"batch_size": batch_size, # samples per gradient step
"learning_rate": learning_rate, # update step magnitude when training
"betas": betas, # momentum hyperparameter for adam-like optimizers
"step_size": step_size, # decay period for the learning rate
"gamma": gamma, # decay coefficient for the learning rate
"optimizer": self.optimizer_dict[
optimizer
], # which optimizer to use among dict options
"momentum": momentum, # momentum hyperparameter for SGD
"enc_n_neurons": enc_n_neurons, # neurons to use for the mlp encoder
"enc_n_layers": enc_n_layers, # number of hidden layers in the mlp encoder
"proj_n_neurons": proj_n_neurons, # neurons to use for the mlp projector
"proj_n_layers": proj_n_layers, # number of hidden layers in the mlp projector
"embedding_dim": embedding_dim, # latent space dim for downstream tasks
"weight_decay": weight_decay, # l2 regularization for linear layers
"verbose": verbose, # whether to print feedback
"radius": "Not defined yet", # fingerprint radius
"n_bits": n_bits, # fingerprint bit size
"aa_emb_size": aa_emb_size, # aa embedding size
}
# create history dictionary
self.history = {
"train_loss": [],
"on_diag_loss": [],
"off_diag_loss": [],
"validation_loss": [],
}
# run NN architecture construction method
self.construct_model()
# run scheduler construction method
self.construct_scheduler()
# print if necessary
if self.param_dict["verbose"] is True:
self.print_config()
@staticmethod
def __validate_inputs(locals_dict) -> None:
# get signature types from __init__
init_signature = inspect.signature(BarlowTwins.__init__)
# loop over all chosen arguments
for param_name, param_value in locals_dict.items():
# skip self
if param_name != "self":
# check that parameter exists
if param_name in init_signature.parameters:
# check that param is correct type
expected_type = init_signature.parameters[param_name].annotation
assert isinstance(
param_value, expected_type
), f"[BT]: Type mismatch for parameter '{param_name}'"
else:
raise ValueError(f"[BT]: Unexpected parameter '{param_name}'")
def construct_mlp(self, input_units, layer_units, n_layers, output_units) -> nn.Sequential:
# make empty list to fill
mlp_list = []
# make lists defining layer sizes (input + n_neurons*n_layers + embedding_dim)
units = [input_units] + [layer_units] * n_layers
# add layer stack (linear -> batchnorm -> dropout -> activation)
for i in range(len(units) - 1):
mlp_list.append(nn.Linear(units[i], units[i + 1]))
mlp_list.append(nn.BatchNorm1d(units[i + 1]))
mlp_list.append(self.param_dict["act_function"]())
# add final linear layer
mlp_list.append(nn.Linear(units[-1], output_units))
return nn.Sequential(*mlp_list)
def construct_model(self) -> None:
# create fingerprint transformer
self.enc_mol = self.construct_mlp(
self.param_dict["n_bits"],
self.param_dict["enc_n_neurons"],
self.param_dict["enc_n_layers"],
self.param_dict["embedding_dim"],
)
# create aa transformer
self.enc_aa = self.construct_mlp(
self.param_dict["aa_emb_size"],
self.param_dict["enc_n_neurons"],
self.param_dict["enc_n_layers"],
self.param_dict["embedding_dim"],
)
# create mlp projector
self.proj = self.construct_mlp(
self.param_dict["embedding_dim"],
self.param_dict["proj_n_neurons"],
self.param_dict["proj_n_layers"],
self.param_dict["proj_n_neurons"],
)
# print if necessary
if self.param_dict["verbose"] is True:
print("[BT]: Model constructed successfully")
def construct_scheduler(self):
# make optimizer
self.optimizer = self.param_dict["optimizer"](
list(self.enc_mol.parameters())
+ list(self.enc_aa.parameters())
+ list(self.proj.parameters()),
lr=self.param_dict["learning_rate"],
betas=self.param_dict["betas"],
# momentum=self.param_dict["momentum"],
weight_decay=self.param_dict["weight_decay"],
)
# wrap optimizer in scheduler
"""
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
self.optimizer,
T_max=self.param_dict["step_size"], # T_0
# eta_min=1e-7,
verbose=True
)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
patience=self.param_dict["step_size"],
verbose=True
)
"""
self.scheduler = torch.optim.lr_scheduler.StepLR(
self.optimizer,
step_size=self.param_dict["step_size"],
gamma=self.param_dict["gamma"],
)
# print if necessary
if self.param_dict["verbose"] is True:
print("[BT]: Optimizer constructed successfully")
def switch_mode(self, is_training: bool):
if is_training:
self.enc_mol.train()
self.enc_aa.train()
self.proj.train()
else:
self.enc_mol.eval()
self.enc_aa.eval()
self.proj.eval()
@staticmethod
def normalize_projection(tensor: torch.tensor) -> torch.tensor:
means = torch.mean(tensor, axis=0)
std = torch.std(tensor, axis=0)
centered = torch.add(tensor, -means)
scaled = torch.div(centered, std)
return scaled
def compute_loss(
self,
mol_embedding: torch.tensor,
aa_embedding: torch.tensor,
) -> torch.tensor:
# empirical cross-correlation matrix
mol_embedding = self.normalize_projection(mol_embedding).T
aa_embedding = self.normalize_projection(aa_embedding)
c = mol_embedding @ aa_embedding
# normalize by number of samples
c.div_(self.param_dict["batch_size"])
# compute elements on diagonal
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
# compute elements off diagonal
n, m = c.shape
off_diag = c.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
off_diag = off_diag.pow_(2).sum() * self.param_dict["loss_weight"]
return on_diag, off_diag
def forward(
self, mol_data: torch.tensor, aa_data: torch.tensor, is_training: bool = True
) -> torch.tensor:
# switch according to input
self.switch_mode(is_training)
# get embeddings
mol_embeddings = self.enc_mol(mol_data)
aa_embeddings = self.enc_aa(aa_data)
# get projections
mol_proj = self.proj(mol_embeddings)
aa_proj = self.proj(aa_embeddings)
# compute loss
on_diag, off_diag = self.compute_loss(mol_proj, aa_proj)
return on_diag, off_diag
def train(
self,
train_data: torch.utils.data.DataLoader,
val_data: torch.utils.data.DataLoader = None,
num_epochs: int = 20,
patience: int = None,
):
if self.param_dict["verbose"] is True:
print("[BT]: Training started")
if patience is None:
patience = 2 * self.param_dict["step_size"]
pbar = trange(num_epochs, desc="[BT]: Epochs", leave=False, colour="blue")
for epoch in pbar:
# initialize loss containers
train_loss = 0.0
on_diag_loss = 0.0
off_diag_loss = 0.0
val_loss = 0.0
# loop over training set
for _, (mol_data, aa_data) in enumerate(train_data):
# reset grad
self.optimizer.zero_grad()
# compute train loss for batch
on_diag, off_diag = self.forward(mol_data, aa_data, is_training=True)
t_loss = on_diag + off_diag
# backpropagation and optimization
t_loss.backward()
"""
nn.utils.clip_grad_norm_(
list(self.enc_mol.parameters()) +
list(self.enc_aa.parameters()) +
list(self.proj.parameters()),
1
)
"""
self.optimizer.step()
# add i-th loss to training container
train_loss += t_loss.item()
on_diag_loss += on_diag.item()
off_diag_loss += off_diag.item()
# add mean epoch loss for train data to history dictionary
self.history["train_loss"].append(train_loss / len(train_data))
self.history["on_diag_loss"].append(on_diag_loss / len(train_data))
self.history["off_diag_loss"].append(off_diag_loss / len(train_data))
# define msg to be printed
msg = (
f"[BT]: Epoch [{epoch + 1}/{num_epochs}], "
f"Train loss: {train_loss / len(train_data):.3f}, "
f"On diagonal: {on_diag_loss / len(train_data):.3f}, "
f"Off diagonal: {off_diag_loss / len(train_data):.3f} "
)
# loop over validation set (if present)
if val_data is not None:
for _, (mol_data, aa_data) in enumerate(val_data):
# compute val loss for batch
on_diag_v_loss, off_diag_v_loss = self.forward(
mol_data, aa_data, is_training=False
)
# add i-th loss to val container
v_loss = on_diag_v_loss + off_diag_v_loss
val_loss += v_loss.item()
# add mean epoc loss for val data to history dictionary
self.history["validation_loss"].append(val_loss / len(val_data))
# add val loss to msg
msg += f", Val loss: {val_loss / len(val_data):.3f}"
# early stopping
if self.early_stopping(patience=patience):
break
pbar.set_postfix(
{
"train loss": train_loss / len(train_data),
"val loss": val_loss / len(val_data),
}
)
else:
pbar.set_postfix({"train loss": train_loss / len(train_data)})
# update scheduler
self.scheduler.step() # val_loss / len(val_data)
if self.param_dict["verbose"] is True:
print(msg)
if self.param_dict["verbose"] is True:
print("[BT]: Training finished")
@spaces.GPU
def encode(
self, vector: np.ndarray, mode: str = "embedding", normalize: bool = True, encoder: str = "mol"
) -> np.ndarray:
"""
Encodes a given vector using the Barlow Twins model.
Args:
- vector (np.ndarray): the input vector to encode
- mode (str): the mode to use for encoding, either "embedding" or "projection"
- normalize (bool): whether to L2 normalize the output vector
Returns:
- np.ndarray: the encoded vector
"""
# set mol encoder to eval mode
self.switch_mode(is_training=False)
# convert from numpy to tensor
if type(vector) is not torch.Tensor:
vector = torch.from_numpy(vector)
# if oly one molecule pair is passed, add a batch dimension
if len(vector.shape) == 1:
vector = vector.unsqueeze(0)
# get representation
if encoder == "mol":
embedding = self.enc_mol(vector)
if mode == "projection":
embedding = self.proj(embedding)
elif encoder == "aa":
embedding = self.enc_aa(vector)
if mode == "projection":
embedding = self.proj(embedding)
else:
raise ValueError("[BT]: Encoder not recognized")
# L2 normalize (optional)
if normalize:
embedding = torch.nn.functional.normalize(embedding)
# convert back to numpy
return embedding.cpu().detach().numpy()
@spaces.GPU
def zero_shot(
self, mol_vector: np.ndarray, aa_vector: np.ndarray, l2_norm: bool = True, device: str = "cpu"
) -> np.ndarray:
# disable training
self.switch_mode(is_training=False)
# cast aa vectors (pos and neg) to correct size, force single precision
# to both
mol_vector = np.array(mol_vector, dtype=np.float32)
aa_vector = np.array(aa_vector, dtype=np.float32)
# convert to tensors
mol_vector = torch.from_numpy(mol_vector).to(device)
aa_vector = torch.from_numpy(aa_vector).to(device)
# get embeddings
mol_embedding = self.encode(mol_vector, normalize=l2_norm, encoder="mol")
aa_embedding = self.encode(aa_vector, normalize=l2_norm, encoder="aa")
# concat mol and aa embeddings
concat = np.concatenate((mol_embedding, aa_embedding), axis=1)
return concat
def zero_shot_explain(
self, mol_vector, aa_vector, l2_norm: bool = True, device: str = "cpu"
):
self.switch_mode(is_training=False)
mol_embedding = self.encode(mol_vector, normalize=l2_norm, encoder="mol")
aa_embedding = self.encode(aa_vector, normalize=l2_norm, encoder="aa")
return torch.cat((mol_embedding, aa_embedding), dim=1)
def consume_preprocessor(self, preprocessor) -> None:
# save attributes related to fingerprint generation from
# preprocessor object
self.param_dict["radius"] = preprocessor.radius
self.param_dict["n_bits"] = preprocessor.n_bits
def save_model(self, path: str) -> None:
# get current date and time for the filename
now = datetime.now()
formatted_date = now.strftime("%d%m%Y")
formatted_time = now.strftime("%H%M")
folder_name = f"{formatted_date}_{formatted_time}"
# make full path string and folder
folder_path = path + "/" + folder_name
os.makedirs(folder_path)
# make paths for weights, config and history
weight_path = folder_path + "/weights.pt"
param_path = folder_path + "/params.pkl"
history_path = folder_path + "/history.json"
# save each Sequential state dict in one object to the path
torch.save(
{
"enc_mol": self.enc_mol.state_dict(),
"enc_aa": self.enc_aa.state_dict(),
"proj": self.proj.state_dict(),
},
weight_path,
)
# dump params in pkl
with open(param_path, "wb") as file:
pickle.dump(self.param_dict, file)
# dump history in json
with open(history_path, "wb") as file:
pickle.dump(self.history, file)
# print if verbose is True
if self.param_dict["verbose"] is True:
print(f"[BT]: Model saved at {folder_path}")
@spaces.GPU
def load_model(self, path: str) -> None:
# make weights, config and history paths
weights_path = path + "/weights.pt"
param_path = path + "/params.pkl"
history_path = path + "/history.json"
# load weights, history and params
checkpoint = torch.load(weights_path, map_location=self.device)
with open(param_path, "rb") as file:
param_dict = pickle.load(file)
with open(history_path, "rb") as file:
history = pickle.load(file)
# construct model again, overriding old verbose key with new instance
verbose = self.param_dict["verbose"]
self.param_dict = param_dict
self.param_dict["verbose"] = verbose
self.history = history
self.construct_model()
# set weights in Sequential models
self.enc_mol.load_state_dict(checkpoint["enc_mol"])
self.enc_aa.load_state_dict(checkpoint["enc_aa"])
self.proj.load_state_dict(checkpoint["proj"])
# recreate scheduler and optimizer in order to add new weights
# to graph
self.construct_scheduler()
# print if verbose is True
if self.param_dict["verbose"] is True:
print(f"[BT]: Model loaded from {path}")
print("[BT]: Loaded parameters:")
print(self.param_dict)
@spaces.GPU
def move_to_device(self, device) -> None:
# move each Sequential model to device
self.enc_mol.to(device)
self.enc_aa.to(device)
self.proj.to(device)
self.device = device
|