Spaces:
Running
on
Zero
Running
on
Zero
Upload 37 files
Browse files- .gitattributes +10 -0
- README.md +5 -8
- app.py +125 -0
- model/__init__.py +0 -0
- model/barlow_twins.py +525 -0
- model/base_model.py +75 -0
- model/model.py +169 -0
- model/preprocessor.py +180 -0
- model/stash/14062024_0910/history.json +0 -0
- model/stash/14062024_0910/log.txt +41 -0
- model/stash/14062024_0910/params.pkl +3 -0
- model/stash/14062024_0910/weights.pt +3 -0
- model/xgb_models/14062024_0910_barlowdti_xxl_model.json +0 -0
- model/xgb_models/xgb_model_BIOSNAP_full_data_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_BIOSNAP_missing_data_70_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_BIOSNAP_missing_data_80_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_BIOSNAP_missing_data_90_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_BIOSNAP_missing_data_95_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_BIOSNAP_unseen_drug_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_BIOSNAP_unseen_protein_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_BindingDB_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_DAVIS_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_nature_mach_intel_BindingDB_cluster_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_nature_mach_intel_BindingDB_protein_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_nature_mach_intel_BindingDB_random_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_nature_mach_intel_BindingDB_scaffold_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_cluster_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_protein_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_random_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_scaffold_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_nature_mach_intel_Human_protein_14062024_0910_bt_optimized_0.json +3 -0
- model/xgb_models/xgb_model_nature_mach_intel_Human_random_14062024_0910_bt_optimized_0.json +0 -0
- model/xgb_models/xgb_model_nature_mach_intel_Human_scaffold_14062024_0910_bt_optimized_0.json +0 -0
- requirements.txt +25 -0
- utils/__init__.py +0 -0
- utils/chem.py +64 -0
- utils/parallel.py +78 -0
- utils/sequence.py +339 -0
.gitattributes
CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model/xgb_models/xgb_model_BindingDB_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model/xgb_models/xgb_model_BIOSNAP_full_data_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
model/xgb_models/xgb_model_BIOSNAP_missing_data_80_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
39 |
+
model/xgb_models/xgb_model_BIOSNAP_unseen_drug_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
40 |
+
model/xgb_models/xgb_model_BIOSNAP_unseen_protein_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
41 |
+
model/xgb_models/xgb_model_nature_mach_intel_BindingDB_protein_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
42 |
+
model/xgb_models/xgb_model_nature_mach_intel_BindingDB_random_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
43 |
+
model/xgb_models/xgb_model_nature_mach_intel_BindingDB_scaffold_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
44 |
+
model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_random_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
45 |
+
model/xgb_models/xgb_model_nature_mach_intel_Human_protein_14062024_0910_bt_optimized_0.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
---
|
2 |
title: BarlowDTI
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.41.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: BarlowDTI
|
3 |
+
emoji: π βοΈ π―
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.41.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
---
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from model.model import DTIModel
|
6 |
+
|
7 |
+
|
8 |
+
dt_str = "14062024_0910"
|
9 |
+
|
10 |
+
|
11 |
+
def make_spider_plot(predictions, model_names, smiles_list):
|
12 |
+
fig = go.Figure()
|
13 |
+
|
14 |
+
for i, (prediction, smiles) in enumerate(zip(predictions, smiles_list)):
|
15 |
+
fig.add_trace(go.Scatterpolar(
|
16 |
+
r=prediction,
|
17 |
+
theta=model_names,
|
18 |
+
fill='toself',
|
19 |
+
name=smiles
|
20 |
+
))
|
21 |
+
|
22 |
+
fig.update_layout(
|
23 |
+
polar=dict(
|
24 |
+
radialaxis=dict(
|
25 |
+
visible=True,
|
26 |
+
range=[0, 1]
|
27 |
+
)),
|
28 |
+
showlegend=True
|
29 |
+
)
|
30 |
+
|
31 |
+
return fig
|
32 |
+
|
33 |
+
|
34 |
+
def predict_and_plot(amino_acid_sequence, smiles_input, datasets):
|
35 |
+
model_ensemble = {}
|
36 |
+
|
37 |
+
gbm_model_paths = {
|
38 |
+
"BindingDB": f"model/xgb_models/xgb_model_BindingDB_{dt_str}_bt_optimized_0.json",
|
39 |
+
"BioSNAP": f"model/xgb_models/xgb_model_BIOSNAP_full_data_{dt_str}_bt_optimized_0.json",
|
40 |
+
"DAVIS": f"model/xgb_models/xgb_model_DAVIS_{dt_str}_bt_optimized_0.json",
|
41 |
+
"BarlowDTI XXL": f"model/xgb_models/{dt_str}_barlowdti_xxl_model.json",
|
42 |
+
}
|
43 |
+
|
44 |
+
for model in datasets:
|
45 |
+
print(f"Loading model {model}")
|
46 |
+
|
47 |
+
model_ensemble[model] = DTIModel(
|
48 |
+
bt_model_path=f"model/stash/{dt_str}",
|
49 |
+
gbm_model_path=gbm_model_paths[model],
|
50 |
+
)
|
51 |
+
|
52 |
+
smiles_list = smiles_input.strip().split('\n')
|
53 |
+
predictions = []
|
54 |
+
for model in model_ensemble.values():
|
55 |
+
model_predictions = model.predict(smiles_list, amino_acid_sequence)
|
56 |
+
predictions.append(model_predictions)
|
57 |
+
|
58 |
+
predictions = np.array(predictions).transpose().tolist()
|
59 |
+
|
60 |
+
df = pd.DataFrame(predictions, index=smiles_list, columns=datasets).reset_index()
|
61 |
+
df.columns = ["SMILES"] + datasets
|
62 |
+
|
63 |
+
fig = make_spider_plot(predictions, datasets, smiles_list)
|
64 |
+
|
65 |
+
return fig, df
|
66 |
+
|
67 |
+
|
68 |
+
dataset_names = [
|
69 |
+
"BarlowDTI XXL",
|
70 |
+
"BindingDB",
|
71 |
+
"BioSNAP",
|
72 |
+
"DAVIS",
|
73 |
+
]
|
74 |
+
|
75 |
+
title = "Predict Drug-Target Interactions with <span style='font-variant:small-caps;'>BarlowDTI</span>"
|
76 |
+
|
77 |
+
description = """
|
78 |
+
Input Amino Acid Sequence and SMILES to get interaction predictions visualized as a spider graph and in a table.
|
79 |
+
The values ca be interpreted as the probability of interaction between the drug and target (0 = no interaction, 1 = interaction).
|
80 |
+
|
81 |
+
__Note: Inference may take a loger time, you can upgrade to a paid GPU-enabled plan for faster inference.__
|
82 |
+
"""
|
83 |
+
|
84 |
+
article = """
|
85 |
+
This interface enables the use of <span style='font-variant:small-caps;'>BarlowDTI</span> to predict drug-target interactions.
|
86 |
+
The model ensemble consists of three models trained on different datasets: BindingDB, BIOSNAP, and DAVIS.
|
87 |
+
|
88 |
+
If you use this interface in your research, please cite our paper:
|
89 |
+
```
|
90 |
+
@misc{schuh2024barlowtwinsdeepneural,
|
91 |
+
title={Barlow Twins Deep Neural Network for Advanced 1D Drug-Target Interaction Prediction},
|
92 |
+
author={Maximilian G. Schuh and Davide Boldini and Stephan A. Sieber},
|
93 |
+
year={2024},
|
94 |
+
eprint={2408.00040},
|
95 |
+
archivePrefix={arXiv},
|
96 |
+
primaryClass={q-bio.BM},
|
97 |
+
url={https://arxiv.org/abs/2408.00040},
|
98 |
+
}
|
99 |
+
```
|
100 |
+
"""
|
101 |
+
|
102 |
+
theme = gr.themes.Base(
|
103 |
+
primary_hue="violet",
|
104 |
+
font=[gr.themes.GoogleFont('IBM Plex Sans'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
|
105 |
+
)
|
106 |
+
|
107 |
+
iface = gr.Interface(
|
108 |
+
fn=predict_and_plot,
|
109 |
+
inputs=[
|
110 |
+
gr.Textbox(label="Protein Sequence", info="Just one sequence is allowed. Remove FASTA syntax (e.g. >ABC)."),
|
111 |
+
gr.Textbox(label="Molecule SMILES", info="One per line, multiple allowed."),
|
112 |
+
gr.CheckboxGroup(choices=dataset_names, label="Select Models for Prediction", value="BarlowDTI XXL")
|
113 |
+
],
|
114 |
+
outputs=[
|
115 |
+
gr.Plot(label="Predictions Visualization"),
|
116 |
+
gr.DataFrame(label="Predictions DataFrame"),
|
117 |
+
# gr.DownloadButton(label="Download Predictions")
|
118 |
+
],
|
119 |
+
title=title,
|
120 |
+
description=description,
|
121 |
+
article=article,
|
122 |
+
theme=theme
|
123 |
+
)
|
124 |
+
|
125 |
+
iface.launch()
|
model/__init__.py
ADDED
File without changes
|
model/barlow_twins.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
torch.manual_seed(42)
|
3 |
+
torch.backends.cudnn.deterministic = True
|
4 |
+
from torch import nn
|
5 |
+
import numpy as np
|
6 |
+
from typing import *
|
7 |
+
from datetime import datetime
|
8 |
+
import os
|
9 |
+
import pickle
|
10 |
+
import inspect
|
11 |
+
from tqdm.auto import trange
|
12 |
+
|
13 |
+
from model.base_model import BaseModel
|
14 |
+
|
15 |
+
|
16 |
+
class BarlowTwins(BaseModel):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
n_bits: int = 1024,
|
20 |
+
aa_emb_size: int = 1024,
|
21 |
+
enc_n_neurons: int = 512,
|
22 |
+
enc_n_layers: int = 2,
|
23 |
+
proj_n_neurons: int = 2048,
|
24 |
+
proj_n_layers: int = 2,
|
25 |
+
embedding_dim: int = 512,
|
26 |
+
act_function: str = "relu",
|
27 |
+
loss_weight: float = 0.005,
|
28 |
+
batch_size: int = 512,
|
29 |
+
optimizer: str = "adamw",
|
30 |
+
momentum: float = 0.9,
|
31 |
+
learning_rate: float = 0.0001,
|
32 |
+
betas: tuple = (0.9, 0.999),
|
33 |
+
weight_decay: float = 1e-3,
|
34 |
+
step_size: int = 10,
|
35 |
+
gamma: float = 0.1,
|
36 |
+
verbose: bool = True,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.enc_aa = None
|
41 |
+
self.enc_mol = None
|
42 |
+
self.proj = None
|
43 |
+
|
44 |
+
self.scheduler = None
|
45 |
+
self.optimizer = None
|
46 |
+
|
47 |
+
# store input in dict
|
48 |
+
self.param_dict = {
|
49 |
+
"act_function": self.activation_dict[
|
50 |
+
act_function
|
51 |
+
], # which activation function to use among dict options
|
52 |
+
"loss_weight": loss_weight, # off-diagonal cross correlation loss weight
|
53 |
+
"batch_size": batch_size, # samples per gradient step
|
54 |
+
"learning_rate": learning_rate, # update step magnitude when training
|
55 |
+
"betas": betas, # momentum hyperparameter for adam-like optimizers
|
56 |
+
"step_size": step_size, # decay period for the learning rate
|
57 |
+
"gamma": gamma, # decay coefficient for the learning rate
|
58 |
+
"optimizer": self.optimizer_dict[
|
59 |
+
optimizer
|
60 |
+
], # which optimizer to use among dict options
|
61 |
+
"momentum": momentum, # momentum hyperparameter for SGD
|
62 |
+
"enc_n_neurons": enc_n_neurons, # neurons to use for the mlp encoder
|
63 |
+
"enc_n_layers": enc_n_layers, # number of hidden layers in the mlp encoder
|
64 |
+
"proj_n_neurons": proj_n_neurons, # neurons to use for the mlp projector
|
65 |
+
"proj_n_layers": proj_n_layers, # number of hidden layers in the mlp projector
|
66 |
+
"embedding_dim": embedding_dim, # latent space dim for downstream tasks
|
67 |
+
"weight_decay": weight_decay, # l2 regularization for linear layers
|
68 |
+
"verbose": verbose, # whether to print feedback
|
69 |
+
"radius": "Not defined yet", # fingerprint radius
|
70 |
+
"n_bits": n_bits, # fingerprint bit size
|
71 |
+
"aa_emb_size": aa_emb_size, # aa embedding size
|
72 |
+
}
|
73 |
+
|
74 |
+
# create history dictionary
|
75 |
+
self.history = {
|
76 |
+
"train_loss": [],
|
77 |
+
"on_diag_loss": [],
|
78 |
+
"off_diag_loss": [],
|
79 |
+
"validation_loss": [],
|
80 |
+
}
|
81 |
+
|
82 |
+
# run NN architecture construction method
|
83 |
+
self.construct_model()
|
84 |
+
|
85 |
+
# run scheduler construction method
|
86 |
+
self.construct_scheduler()
|
87 |
+
|
88 |
+
# print if necessary
|
89 |
+
if self.param_dict["verbose"] is True:
|
90 |
+
self.print_config()
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def __validate_inputs(locals_dict) -> None:
|
94 |
+
# get signature types from __init__
|
95 |
+
init_signature = inspect.signature(BarlowTwins.__init__)
|
96 |
+
|
97 |
+
# loop over all chosen arguments
|
98 |
+
for param_name, param_value in locals_dict.items():
|
99 |
+
# skip self
|
100 |
+
if param_name != "self":
|
101 |
+
# check that parameter exists
|
102 |
+
if param_name in init_signature.parameters:
|
103 |
+
# check that param is correct type
|
104 |
+
expected_type = init_signature.parameters[param_name].annotation
|
105 |
+
assert isinstance(
|
106 |
+
param_value, expected_type
|
107 |
+
), f"[BT]: Type mismatch for parameter '{param_name}'"
|
108 |
+
else:
|
109 |
+
raise ValueError(f"[BT]: Unexpected parameter '{param_name}'")
|
110 |
+
|
111 |
+
def construct_mlp(self, input_units, layer_units, n_layers, output_units) -> nn.Sequential:
|
112 |
+
|
113 |
+
# make empty list to fill
|
114 |
+
mlp_list = []
|
115 |
+
|
116 |
+
# make lists defining layer sizes (input + n_neurons*n_layers + embedding_dim)
|
117 |
+
units = [input_units] + [layer_units] * n_layers
|
118 |
+
|
119 |
+
# add layer stack (linear -> batchnorm -> dropout -> activation)
|
120 |
+
for i in range(len(units) - 1):
|
121 |
+
mlp_list.append(nn.Linear(units[i], units[i + 1]))
|
122 |
+
mlp_list.append(nn.BatchNorm1d(units[i + 1]))
|
123 |
+
mlp_list.append(self.param_dict["act_function"]())
|
124 |
+
|
125 |
+
# add final linear layer
|
126 |
+
mlp_list.append(nn.Linear(units[-1], output_units))
|
127 |
+
|
128 |
+
return nn.Sequential(*mlp_list)
|
129 |
+
|
130 |
+
def construct_model(self) -> None:
|
131 |
+
# create fingerprint transformer
|
132 |
+
self.enc_mol = self.construct_mlp(
|
133 |
+
self.param_dict["n_bits"],
|
134 |
+
self.param_dict["enc_n_neurons"],
|
135 |
+
self.param_dict["enc_n_layers"],
|
136 |
+
self.param_dict["embedding_dim"],
|
137 |
+
)
|
138 |
+
|
139 |
+
# create aa transformer
|
140 |
+
self.enc_aa = self.construct_mlp(
|
141 |
+
self.param_dict["aa_emb_size"],
|
142 |
+
self.param_dict["enc_n_neurons"],
|
143 |
+
self.param_dict["enc_n_layers"],
|
144 |
+
self.param_dict["embedding_dim"],
|
145 |
+
)
|
146 |
+
|
147 |
+
# create mlp projector
|
148 |
+
self.proj = self.construct_mlp(
|
149 |
+
self.param_dict["embedding_dim"],
|
150 |
+
self.param_dict["proj_n_neurons"],
|
151 |
+
self.param_dict["proj_n_layers"],
|
152 |
+
self.param_dict["proj_n_neurons"],
|
153 |
+
)
|
154 |
+
|
155 |
+
# print if necessary
|
156 |
+
if self.param_dict["verbose"] is True:
|
157 |
+
print("[BT]: Model constructed successfully")
|
158 |
+
|
159 |
+
def construct_scheduler(self):
|
160 |
+
# make optimizer
|
161 |
+
self.optimizer = self.param_dict["optimizer"](
|
162 |
+
list(self.enc_mol.parameters())
|
163 |
+
+ list(self.enc_aa.parameters())
|
164 |
+
+ list(self.proj.parameters()),
|
165 |
+
lr=self.param_dict["learning_rate"],
|
166 |
+
betas=self.param_dict["betas"],
|
167 |
+
# momentum=self.param_dict["momentum"],
|
168 |
+
weight_decay=self.param_dict["weight_decay"],
|
169 |
+
)
|
170 |
+
|
171 |
+
# wrap optimizer in scheduler
|
172 |
+
"""
|
173 |
+
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
174 |
+
self.optimizer,
|
175 |
+
T_max=self.param_dict["step_size"], # T_0
|
176 |
+
# eta_min=1e-7,
|
177 |
+
verbose=True
|
178 |
+
)
|
179 |
+
|
180 |
+
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
181 |
+
self.optimizer,
|
182 |
+
patience=self.param_dict["step_size"],
|
183 |
+
verbose=True
|
184 |
+
)
|
185 |
+
"""
|
186 |
+
self.scheduler = torch.optim.lr_scheduler.StepLR(
|
187 |
+
self.optimizer,
|
188 |
+
step_size=self.param_dict["step_size"],
|
189 |
+
gamma=self.param_dict["gamma"],
|
190 |
+
)
|
191 |
+
|
192 |
+
# print if necessary
|
193 |
+
if self.param_dict["verbose"] is True:
|
194 |
+
print("[BT]: Optimizer constructed successfully")
|
195 |
+
|
196 |
+
def switch_mode(self, is_training: bool):
|
197 |
+
if is_training:
|
198 |
+
self.enc_mol.train()
|
199 |
+
self.enc_aa.train()
|
200 |
+
self.proj.train()
|
201 |
+
else:
|
202 |
+
self.enc_mol.eval()
|
203 |
+
self.enc_aa.eval()
|
204 |
+
self.proj.eval()
|
205 |
+
|
206 |
+
@staticmethod
|
207 |
+
def normalize_projection(tensor: torch.tensor) -> torch.tensor:
|
208 |
+
means = torch.mean(tensor, axis=0)
|
209 |
+
std = torch.std(tensor, axis=0)
|
210 |
+
centered = torch.add(tensor, -means)
|
211 |
+
scaled = torch.div(centered, std)
|
212 |
+
|
213 |
+
return scaled
|
214 |
+
|
215 |
+
def compute_loss(
|
216 |
+
self,
|
217 |
+
mol_embedding: torch.tensor,
|
218 |
+
aa_embedding: torch.tensor,
|
219 |
+
) -> torch.tensor:
|
220 |
+
|
221 |
+
# empirical cross-correlation matrix
|
222 |
+
mol_embedding = self.normalize_projection(mol_embedding).T
|
223 |
+
aa_embedding = self.normalize_projection(aa_embedding)
|
224 |
+
c = mol_embedding @ aa_embedding
|
225 |
+
|
226 |
+
# normalize by number of samples
|
227 |
+
c.div_(self.param_dict["batch_size"])
|
228 |
+
|
229 |
+
# compute elements on diagonal
|
230 |
+
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
|
231 |
+
|
232 |
+
# compute elements off diagonal
|
233 |
+
n, m = c.shape
|
234 |
+
off_diag = c.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
|
235 |
+
off_diag = off_diag.pow_(2).sum() * self.param_dict["loss_weight"]
|
236 |
+
|
237 |
+
return on_diag, off_diag
|
238 |
+
|
239 |
+
def forward(
|
240 |
+
self, mol_data: torch.tensor, aa_data: torch.tensor, is_training: bool = True
|
241 |
+
) -> torch.tensor:
|
242 |
+
|
243 |
+
# switch according to input
|
244 |
+
self.switch_mode(is_training)
|
245 |
+
|
246 |
+
# get embeddings
|
247 |
+
mol_embeddings = self.enc_mol(mol_data)
|
248 |
+
aa_embeddings = self.enc_aa(aa_data)
|
249 |
+
|
250 |
+
# get projections
|
251 |
+
mol_proj = self.proj(mol_embeddings)
|
252 |
+
aa_proj = self.proj(aa_embeddings)
|
253 |
+
|
254 |
+
# compute loss
|
255 |
+
on_diag, off_diag = self.compute_loss(mol_proj, aa_proj)
|
256 |
+
|
257 |
+
return on_diag, off_diag
|
258 |
+
|
259 |
+
def train(
|
260 |
+
self,
|
261 |
+
train_data: torch.utils.data.DataLoader,
|
262 |
+
val_data: torch.utils.data.DataLoader = None,
|
263 |
+
num_epochs: int = 20,
|
264 |
+
patience: int = None,
|
265 |
+
):
|
266 |
+
if self.param_dict["verbose"] is True:
|
267 |
+
print("[BT]: Training started")
|
268 |
+
|
269 |
+
if patience is None:
|
270 |
+
patience = 2 * self.param_dict["step_size"]
|
271 |
+
|
272 |
+
pbar = trange(num_epochs, desc="[BT]: Epochs", leave=False, colour="blue")
|
273 |
+
|
274 |
+
for epoch in pbar:
|
275 |
+
# initialize loss containers
|
276 |
+
train_loss = 0.0
|
277 |
+
on_diag_loss = 0.0
|
278 |
+
off_diag_loss = 0.0
|
279 |
+
val_loss = 0.0
|
280 |
+
|
281 |
+
# loop over training set
|
282 |
+
for _, (mol_data, aa_data) in enumerate(train_data):
|
283 |
+
# reset grad
|
284 |
+
self.optimizer.zero_grad()
|
285 |
+
|
286 |
+
# compute train loss for batch
|
287 |
+
on_diag, off_diag = self.forward(mol_data, aa_data, is_training=True)
|
288 |
+
t_loss = on_diag + off_diag
|
289 |
+
|
290 |
+
# backpropagation and optimization
|
291 |
+
t_loss.backward()
|
292 |
+
"""
|
293 |
+
nn.utils.clip_grad_norm_(
|
294 |
+
list(self.enc_mol.parameters()) +
|
295 |
+
list(self.enc_aa.parameters()) +
|
296 |
+
list(self.proj.parameters()),
|
297 |
+
1
|
298 |
+
)
|
299 |
+
"""
|
300 |
+
self.optimizer.step()
|
301 |
+
|
302 |
+
# add i-th loss to training container
|
303 |
+
train_loss += t_loss.item()
|
304 |
+
on_diag_loss += on_diag.item()
|
305 |
+
off_diag_loss += off_diag.item()
|
306 |
+
|
307 |
+
# add mean epoch loss for train data to history dictionary
|
308 |
+
self.history["train_loss"].append(train_loss / len(train_data))
|
309 |
+
self.history["on_diag_loss"].append(on_diag_loss / len(train_data))
|
310 |
+
self.history["off_diag_loss"].append(off_diag_loss / len(train_data))
|
311 |
+
|
312 |
+
# define msg to be printed
|
313 |
+
msg = (
|
314 |
+
f"[BT]: Epoch [{epoch + 1}/{num_epochs}], "
|
315 |
+
f"Train loss: {train_loss / len(train_data):.3f}, "
|
316 |
+
f"On diagonal: {on_diag_loss / len(train_data):.3f}, "
|
317 |
+
f"Off diagonal: {off_diag_loss / len(train_data):.3f} "
|
318 |
+
)
|
319 |
+
|
320 |
+
# loop over validation set (if present)
|
321 |
+
if val_data is not None:
|
322 |
+
|
323 |
+
for _, (mol_data, aa_data) in enumerate(val_data):
|
324 |
+
# compute val loss for batch
|
325 |
+
on_diag_v_loss, off_diag_v_loss = self.forward(
|
326 |
+
mol_data, aa_data, is_training=False
|
327 |
+
)
|
328 |
+
|
329 |
+
# add i-th loss to val container
|
330 |
+
v_loss = on_diag_v_loss + off_diag_v_loss
|
331 |
+
val_loss += v_loss.item()
|
332 |
+
|
333 |
+
# add mean epoc loss for val data to history dictionary
|
334 |
+
self.history["validation_loss"].append(val_loss / len(val_data))
|
335 |
+
|
336 |
+
# add val loss to msg
|
337 |
+
msg += f", Val loss: {val_loss / len(val_data):.3f}"
|
338 |
+
|
339 |
+
# early stopping
|
340 |
+
if self.early_stopping(patience=patience):
|
341 |
+
break
|
342 |
+
|
343 |
+
pbar.set_postfix(
|
344 |
+
{
|
345 |
+
"train loss": train_loss / len(train_data),
|
346 |
+
"val loss": val_loss / len(val_data),
|
347 |
+
}
|
348 |
+
)
|
349 |
+
|
350 |
+
else:
|
351 |
+
pbar.set_postfix({"train loss": train_loss / len(train_data)})
|
352 |
+
|
353 |
+
# update scheduler
|
354 |
+
self.scheduler.step() # val_loss / len(val_data)
|
355 |
+
|
356 |
+
if self.param_dict["verbose"] is True:
|
357 |
+
print(msg)
|
358 |
+
|
359 |
+
if self.param_dict["verbose"] is True:
|
360 |
+
print("[BT]: Training finished")
|
361 |
+
|
362 |
+
def encode(
|
363 |
+
self, vector: np.ndarray, mode: str = "embedding", normalize: bool = True, encoder: str = "mol"
|
364 |
+
) -> np.ndarray:
|
365 |
+
"""
|
366 |
+
Encodes a given vector using the Barlow Twins model.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
- vector (np.ndarray): the input vector to encode
|
370 |
+
- mode (str): the mode to use for encoding, either "embedding" or "projection"
|
371 |
+
- normalize (bool): whether to L2 normalize the output vector
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
- np.ndarray: the encoded vector
|
375 |
+
"""
|
376 |
+
|
377 |
+
# set mol encoder to eval mode
|
378 |
+
self.switch_mode(is_training=False)
|
379 |
+
|
380 |
+
# convert from numpy to tensor
|
381 |
+
if type(vector) is not torch.Tensor:
|
382 |
+
vector = torch.from_numpy(vector)
|
383 |
+
|
384 |
+
# if oly one molecule pair is passed, add a batch dimension
|
385 |
+
if len(vector.shape) == 1:
|
386 |
+
vector = vector.unsqueeze(0)
|
387 |
+
|
388 |
+
# get representation
|
389 |
+
if encoder == "mol":
|
390 |
+
embedding = self.enc_mol(vector)
|
391 |
+
if mode == "projection":
|
392 |
+
embedding = self.proj(embedding)
|
393 |
+
elif encoder == "aa":
|
394 |
+
embedding = self.enc_aa(vector)
|
395 |
+
if mode == "projection":
|
396 |
+
embedding = self.proj(embedding)
|
397 |
+
else:
|
398 |
+
raise ValueError("[BT]: Encoder not recognized")
|
399 |
+
|
400 |
+
# L2 normalize (optional)
|
401 |
+
if normalize:
|
402 |
+
embedding = torch.nn.functional.normalize(embedding)
|
403 |
+
|
404 |
+
# convert back to numpy
|
405 |
+
return embedding.cpu().detach().numpy()
|
406 |
+
|
407 |
+
def zero_shot(
|
408 |
+
self, mol_vector: np.ndarray, aa_vector: np.ndarray, l2_norm: bool = True, device: str = "cpu"
|
409 |
+
) -> np.ndarray:
|
410 |
+
|
411 |
+
# disable training
|
412 |
+
self.switch_mode(is_training=False)
|
413 |
+
|
414 |
+
# cast aa vectors (pos and neg) to correct size, force single precision
|
415 |
+
# to both
|
416 |
+
mol_vector = np.array(mol_vector, dtype=np.float32)
|
417 |
+
aa_vector = np.array(aa_vector, dtype=np.float32)
|
418 |
+
|
419 |
+
# convert to tensors
|
420 |
+
mol_vector = torch.from_numpy(mol_vector).to(device)
|
421 |
+
aa_vector = torch.from_numpy(aa_vector).to(device)
|
422 |
+
|
423 |
+
# get embeddings
|
424 |
+
mol_embedding = self.encode(mol_vector, normalize=l2_norm, encoder="mol")
|
425 |
+
aa_embedding = self.encode(aa_vector, normalize=l2_norm, encoder="aa")
|
426 |
+
|
427 |
+
# concat mol and aa embeddings
|
428 |
+
concat = np.concatenate((mol_embedding, aa_embedding), axis=1)
|
429 |
+
return concat
|
430 |
+
|
431 |
+
def zero_shot_explain(
|
432 |
+
self, mol_vector, aa_vector, l2_norm: bool = True, device: str = "cpu"
|
433 |
+
):
|
434 |
+
self.switch_mode(is_training=False)
|
435 |
+
|
436 |
+
mol_embedding = self.encode(mol_vector, normalize=l2_norm, encoder="mol")
|
437 |
+
aa_embedding = self.encode(aa_vector, normalize=l2_norm, encoder="aa")
|
438 |
+
|
439 |
+
return torch.cat((mol_embedding, aa_embedding), dim=1)
|
440 |
+
|
441 |
+
def consume_preprocessor(self, preprocessor) -> None:
|
442 |
+
# save attributes related to fingerprint generation from
|
443 |
+
# preprocessor object
|
444 |
+
self.param_dict["radius"] = preprocessor.radius
|
445 |
+
self.param_dict["n_bits"] = preprocessor.n_bits
|
446 |
+
|
447 |
+
def save_model(self, path: str) -> None:
|
448 |
+
# get current date and time for the filename
|
449 |
+
now = datetime.now()
|
450 |
+
formatted_date = now.strftime("%d%m%Y")
|
451 |
+
formatted_time = now.strftime("%H%M")
|
452 |
+
folder_name = f"{formatted_date}_{formatted_time}"
|
453 |
+
|
454 |
+
# make full path string and folder
|
455 |
+
folder_path = path + "/" + folder_name
|
456 |
+
os.makedirs(folder_path)
|
457 |
+
|
458 |
+
# make paths for weights, config and history
|
459 |
+
weight_path = folder_path + "/weights.pt"
|
460 |
+
param_path = folder_path + "/params.pkl"
|
461 |
+
history_path = folder_path + "/history.json"
|
462 |
+
|
463 |
+
# save each Sequential state dict in one object to the path
|
464 |
+
torch.save(
|
465 |
+
{
|
466 |
+
"enc_mol": self.enc_mol.state_dict(),
|
467 |
+
"enc_aa": self.enc_aa.state_dict(),
|
468 |
+
"proj": self.proj.state_dict(),
|
469 |
+
},
|
470 |
+
weight_path,
|
471 |
+
)
|
472 |
+
|
473 |
+
# dump params in pkl
|
474 |
+
with open(param_path, "wb") as file:
|
475 |
+
pickle.dump(self.param_dict, file)
|
476 |
+
|
477 |
+
# dump history in json
|
478 |
+
with open(history_path, "wb") as file:
|
479 |
+
pickle.dump(self.history, file)
|
480 |
+
|
481 |
+
# print if verbose is True
|
482 |
+
if self.param_dict["verbose"] is True:
|
483 |
+
print(f"[BT]: Model saved at {folder_path}")
|
484 |
+
|
485 |
+
def load_model(self, path: str) -> None:
|
486 |
+
# make weights, config and history paths
|
487 |
+
weights_path = path + "/weights.pt"
|
488 |
+
param_path = path + "/params.pkl"
|
489 |
+
history_path = path + "/history.json"
|
490 |
+
|
491 |
+
# load weights, history and params
|
492 |
+
checkpoint = torch.load(weights_path, map_location=self.device)
|
493 |
+
with open(param_path, "rb") as file:
|
494 |
+
param_dict = pickle.load(file)
|
495 |
+
with open(history_path, "rb") as file:
|
496 |
+
history = pickle.load(file)
|
497 |
+
|
498 |
+
# construct model again, overriding old verbose key with new instance
|
499 |
+
verbose = self.param_dict["verbose"]
|
500 |
+
self.param_dict = param_dict
|
501 |
+
self.param_dict["verbose"] = verbose
|
502 |
+
self.history = history
|
503 |
+
self.construct_model()
|
504 |
+
|
505 |
+
# set weights in Sequential models
|
506 |
+
self.enc_mol.load_state_dict(checkpoint["enc_mol"])
|
507 |
+
self.enc_aa.load_state_dict(checkpoint["enc_aa"])
|
508 |
+
self.proj.load_state_dict(checkpoint["proj"])
|
509 |
+
|
510 |
+
# recreate scheduler and optimizer in order to add new weights
|
511 |
+
# to graph
|
512 |
+
self.construct_scheduler()
|
513 |
+
|
514 |
+
# print if verbose is True
|
515 |
+
if self.param_dict["verbose"] is True:
|
516 |
+
print(f"[BT]: Model loaded from {path}")
|
517 |
+
print("[BT]: Loaded parameters:")
|
518 |
+
print(self.param_dict)
|
519 |
+
|
520 |
+
def move_to_device(self, device) -> None:
|
521 |
+
# move each Sequential model to device
|
522 |
+
self.enc_mol.to(device)
|
523 |
+
self.enc_aa.to(device)
|
524 |
+
self.proj.to(device)
|
525 |
+
self.device = device
|
model/base_model.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Any, Union
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
class BaseModel(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super(BaseModel, self).__init__()
|
10 |
+
# set device (gpu 0 or 1 if available or cpu)
|
11 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# make empty param dict
|
14 |
+
self.param_dict = {}
|
15 |
+
|
16 |
+
# make optimizer options dict
|
17 |
+
self.optimizer_dict = {
|
18 |
+
"adam": torch.optim.Adam,
|
19 |
+
"nadam": torch.optim.NAdam,
|
20 |
+
"adamax": torch.optim.Adamax,
|
21 |
+
"adamw": torch.optim.AdamW,
|
22 |
+
"sgd": torch.optim.SGD,
|
23 |
+
}
|
24 |
+
|
25 |
+
# make loss options dict
|
26 |
+
self.loss_dict = {
|
27 |
+
"mse": nn.MSELoss,
|
28 |
+
"l1": nn.L1Loss,
|
29 |
+
"smoothl1": nn.SmoothL1Loss,
|
30 |
+
"huber": nn.HuberLoss,
|
31 |
+
"cel": nn.CrossEntropyLoss, # Suitable for classification tasks
|
32 |
+
"bcel": nn.BCELoss, # Suitable for classification tasks
|
33 |
+
}
|
34 |
+
|
35 |
+
# make activation function options dictionary
|
36 |
+
self.activation_dict = {
|
37 |
+
"relu": nn.ReLU,
|
38 |
+
"swish": nn.Hardswish,
|
39 |
+
"leaky_relu": nn.LeakyReLU,
|
40 |
+
"elu": nn.ELU,
|
41 |
+
"selu": nn.SELU,
|
42 |
+
}
|
43 |
+
|
44 |
+
# make tokenizer placeholder
|
45 |
+
self.tokenizer = None
|
46 |
+
|
47 |
+
# create history dictionary
|
48 |
+
self.history = {
|
49 |
+
"train_loss": [],
|
50 |
+
"on_diag_loss": [],
|
51 |
+
"off_diag_loss": [],
|
52 |
+
"validation_loss": [],
|
53 |
+
"learning_rate": [],
|
54 |
+
}
|
55 |
+
|
56 |
+
# create early stopping params
|
57 |
+
self.count = 0
|
58 |
+
|
59 |
+
def print_config(self) -> None:
|
60 |
+
print("[BT]: Current parameter config:")
|
61 |
+
print(self.param_dict)
|
62 |
+
|
63 |
+
def early_stopping(self, patience: int) -> bool:
|
64 |
+
# count every epoch that's worse than the best for patience times
|
65 |
+
if len(self.history["validation_loss"]) > patience:
|
66 |
+
best_loss = min(self.history["validation_loss"])
|
67 |
+
if self.history["validation_loss"][-1] > best_loss:
|
68 |
+
self.count += 1
|
69 |
+
else:
|
70 |
+
self.count = 0
|
71 |
+
if self.count >= patience:
|
72 |
+
if self.param_dict["verbose"] is True:
|
73 |
+
print("[BT]: Early stopping")
|
74 |
+
return True
|
75 |
+
return False
|
model/model.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import List
|
3 |
+
from tqdm import tqdm
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import threading
|
7 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed, TimeoutError
|
8 |
+
import time
|
9 |
+
import requests
|
10 |
+
import joblib
|
11 |
+
# from bio_embeddings.embed import SeqVecEmbedder, ProtTransBertBFDEmbedder, ProtTransT5XLU50Embedder
|
12 |
+
from Bio import SeqIO
|
13 |
+
import rdkit
|
14 |
+
from rdkit import Chem, DataStructs
|
15 |
+
from rdkit.Chem import AllChem
|
16 |
+
import torch
|
17 |
+
from typing import *
|
18 |
+
from rdkit import RDLogger
|
19 |
+
RDLogger.DisableLog("rdApp.*")
|
20 |
+
|
21 |
+
from xgboost import XGBClassifier, DMatrix
|
22 |
+
|
23 |
+
from model.barlow_twins import BarlowTwins
|
24 |
+
|
25 |
+
# sys.path.append("../utils/")
|
26 |
+
from utils.sequence import uniprot2sequence, encode_sequences
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
class DTIModel:
|
31 |
+
def __init__(self, bt_model_path: str, gbm_model_path: str, encoder: str = "prost_t5"):
|
32 |
+
self.bt_model = BarlowTwins()
|
33 |
+
self.bt_model.load_model(bt_model_path)
|
34 |
+
|
35 |
+
self.gbm_model = XGBClassifier()
|
36 |
+
self.gbm_model.load_model(gbm_model_path)
|
37 |
+
|
38 |
+
self.encoder = encoder
|
39 |
+
|
40 |
+
self.smiles_cache = {}
|
41 |
+
self.sequence_cache = {}
|
42 |
+
|
43 |
+
def _encode_smiles(self, smiles: str, radius: int = 2, bits: int = 1024, features: bool = False):
|
44 |
+
if smiles is None:
|
45 |
+
return None
|
46 |
+
# Check if the SMILES is already in the cache
|
47 |
+
if smiles in self.smiles_cache:
|
48 |
+
return self.smiles_cache[smiles]
|
49 |
+
else:
|
50 |
+
# Encode the SMILES and store it in the cache
|
51 |
+
try:
|
52 |
+
mol = Chem.MolFromSmiles(smiles)
|
53 |
+
morgan = AllChem.GetMorganFingerprintAsBitVect(
|
54 |
+
mol,
|
55 |
+
radius=radius,
|
56 |
+
nBits=bits,
|
57 |
+
useFeatures=features,
|
58 |
+
)
|
59 |
+
morgan = np.array(morgan)
|
60 |
+
self.smiles_cache[smiles] = morgan
|
61 |
+
return morgan
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Failed to encode SMILES: {smiles}")
|
64 |
+
print(e)
|
65 |
+
return None
|
66 |
+
|
67 |
+
def _encode_smiles_mult(self, smiles: List[str], radius: int = 2, bits: int = 1024, features: bool = False):
|
68 |
+
morgan = [self._encode_smiles(s, radius, bits, features) for s in smiles]
|
69 |
+
return np.array(morgan)
|
70 |
+
|
71 |
+
def _encode_sequence(self, sequence: str):
|
72 |
+
# Clear torch cache
|
73 |
+
torch.cuda.empty_cache()
|
74 |
+
if sequence is None:
|
75 |
+
return None
|
76 |
+
# Check if the sequence is already in the cache
|
77 |
+
if sequence in self.sequence_cache:
|
78 |
+
return self.sequence_cache[sequence]
|
79 |
+
else:
|
80 |
+
# Encode the sequence and store it in the cache
|
81 |
+
try:
|
82 |
+
encoded_sequence = encode_sequences([sequence], encoder=self.encoder)
|
83 |
+
self.sequence_cache[sequence] = encoded_sequence
|
84 |
+
return encoded_sequence
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Failed to encode sequence: {sequence}")
|
87 |
+
print(e)
|
88 |
+
return None
|
89 |
+
|
90 |
+
def _encode_sequence_mult(self, sequences: List[str]):
|
91 |
+
seq = [self._encode_sequence(sequence) for sequence in sequences]
|
92 |
+
return np.array(seq)
|
93 |
+
|
94 |
+
def __predict_pair(self, drug_emb: np.ndarray, target_emb: np.ndarray, pred_leaf: bool):
|
95 |
+
if drug_emb.shape[0] < target_emb.shape[0]:
|
96 |
+
drug_emb = np.tile(drug_emb, (len(target_emb), 1))
|
97 |
+
elif len(drug_emb) > len(target_emb):
|
98 |
+
target_emb = np.tile(target_emb, (len(drug_emb), 1))
|
99 |
+
emb = self.bt_model.zero_shot(drug_emb, target_emb)
|
100 |
+
|
101 |
+
if pred_leaf:
|
102 |
+
d_emb = DMatrix(emb)
|
103 |
+
return self.gbm_model.get_booster().predict(d_emb, pred_leaf=True)
|
104 |
+
else:
|
105 |
+
return self.gbm_model.predict_proba(emb)[:, 1]
|
106 |
+
|
107 |
+
def predict(self, drug: List[str] or str, target: str, pred_leaf: bool = False):
|
108 |
+
if isinstance(drug, str):
|
109 |
+
drug_emb = self._encode_smiles(drug)
|
110 |
+
else:
|
111 |
+
drug_emb = self._encode_smiles_mult(drug)
|
112 |
+
target_emb = self._encode_sequence(target)
|
113 |
+
return self.__predict_pair(drug_emb, target_emb, pred_leaf)
|
114 |
+
|
115 |
+
def get_leaf_weights(self):
|
116 |
+
return self.gbm_model.get_booster().get_score(importance_type="weight")
|
117 |
+
|
118 |
+
def _predict_fasta(self, drug: str, fasta_path: str):
|
119 |
+
drug_emb = self._encode_smiles(drug)
|
120 |
+
|
121 |
+
results = []
|
122 |
+
# Extract targets from fasta
|
123 |
+
for target in tqdm(SeqIO.parse(fasta_path, "fasta"), desc="Predicting targets"):
|
124 |
+
target_emb = self._encode_sequence(str(target.seq))
|
125 |
+
pred = self.__predict_pair(drug_emb, target_emb)
|
126 |
+
results.append(
|
127 |
+
{
|
128 |
+
"drug": drug,
|
129 |
+
"target": target.id,
|
130 |
+
"name": target.name,
|
131 |
+
"description": target.description,
|
132 |
+
"prediction": pred[0]
|
133 |
+
}
|
134 |
+
)
|
135 |
+
return pd.DataFrame(results)
|
136 |
+
|
137 |
+
def predict_fasta(self, drug: str, fasta_path: str, timeout_seconds: int = 120):
|
138 |
+
def process_target(target, results):
|
139 |
+
target_emb = self._encode_sequence(str(target.seq))
|
140 |
+
pred = self.__predict_pair(drug_emb, target_emb)
|
141 |
+
results.append({
|
142 |
+
"drug": drug,
|
143 |
+
"target": target.id,
|
144 |
+
"name": target.name,
|
145 |
+
"description": target.description,
|
146 |
+
"prediction": pred[0]
|
147 |
+
})
|
148 |
+
|
149 |
+
drug_emb = self._encode_smiles(drug)
|
150 |
+
results = []
|
151 |
+
|
152 |
+
# First, count the total number of records for the progress bar
|
153 |
+
total_records = sum(1 for _ in SeqIO.parse(fasta_path, "fasta"))
|
154 |
+
|
155 |
+
# Extract targets from fasta with a properly initialized tqdm progress bar
|
156 |
+
for target in tqdm(SeqIO.parse(fasta_path, "fasta"), total=total_records, desc="Predicting targets"):
|
157 |
+
thread_results = []
|
158 |
+
thread = threading.Thread(target=process_target, args=(target, thread_results))
|
159 |
+
thread.start()
|
160 |
+
thread.join(timeout_seconds)
|
161 |
+
if thread.is_alive():
|
162 |
+
print(f"Skipping target {target.id} due to timeout")
|
163 |
+
continue
|
164 |
+
results.extend(thread_results)
|
165 |
+
|
166 |
+
return pd.DataFrame(results)
|
167 |
+
|
168 |
+
def predict_uniprot(self, drug: List[str] or str, uniprot_id: str):
|
169 |
+
return self.predict(drug, uniprot2sequence(uniprot_id))
|
model/preprocessor.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
|
3 |
+
import torch
|
4 |
+
from rdkit import Chem, DataStructs
|
5 |
+
import pandas as pd
|
6 |
+
import pickle as pkl
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
import sys
|
10 |
+
|
11 |
+
# sys.path.append("../utils/")
|
12 |
+
from utils.parallel import *
|
13 |
+
from utils.chem import *
|
14 |
+
from utils.sequence import *
|
15 |
+
|
16 |
+
|
17 |
+
class Preprocessor:
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
path: str,
|
21 |
+
radius: int = 2,
|
22 |
+
n_bits: int = 1024,
|
23 |
+
aa_embedding: str = "prottrans_t5_xl_u50",
|
24 |
+
num_workers: int = 1,
|
25 |
+
):
|
26 |
+
self.path = path
|
27 |
+
self.radius = radius
|
28 |
+
self.n_bits = n_bits
|
29 |
+
self.aa_embedding = aa_embedding
|
30 |
+
self.num_workers = num_workers
|
31 |
+
|
32 |
+
self.data = None
|
33 |
+
self.fp = None
|
34 |
+
self.aa = None
|
35 |
+
self.split = None
|
36 |
+
self.label = None
|
37 |
+
|
38 |
+
self.load_data()
|
39 |
+
self.process_data()
|
40 |
+
|
41 |
+
def load_data(self):
|
42 |
+
if os.path.isfile(self.path):
|
43 |
+
self.data = pd.read_csv(self.path, low_memory=False)
|
44 |
+
else:
|
45 |
+
raise ValueError("No data file found in the specified path")
|
46 |
+
|
47 |
+
def process_data(self):
|
48 |
+
if "smiles" not in self.data.columns:
|
49 |
+
raise ValueError("No smiles column found in the data")
|
50 |
+
if "sequence" not in self.data.columns:
|
51 |
+
raise ValueError("No sequence column found in the data")
|
52 |
+
|
53 |
+
smiles = self.data.smiles.tolist()
|
54 |
+
seq = self.data.sequence.tolist()
|
55 |
+
|
56 |
+
if "split" in self.data.columns:
|
57 |
+
self.split = self.data.split.tolist()
|
58 |
+
if "label" in self.data.columns:
|
59 |
+
self.label = self.data.label.tolist()
|
60 |
+
|
61 |
+
if self.num_workers > 1:
|
62 |
+
mols = parallel(get_mols, self.num_workers, smiles)
|
63 |
+
fps = parallel(get_fp, self.num_workers, mols, self.radius, self.n_bits)
|
64 |
+
else:
|
65 |
+
mols = get_mols(smiles)
|
66 |
+
|
67 |
+
fps = get_fp(mols, self.radius, self.n_bits)
|
68 |
+
|
69 |
+
self.fp = store_fp(fps, self.n_bits)
|
70 |
+
self.aa = encode_sequences(seq, self.aa_embedding)
|
71 |
+
|
72 |
+
def return_generator(
|
73 |
+
self,
|
74 |
+
device,
|
75 |
+
batch_size: int = 512,
|
76 |
+
include_negatives: bool = False,
|
77 |
+
shuffle: bool = True,
|
78 |
+
validation_split: float = None,
|
79 |
+
) -> (DataLoader, DataLoader):
|
80 |
+
|
81 |
+
if self.split is None and self.label is None:
|
82 |
+
print("No split or label columns found in the dataset")
|
83 |
+
dataset = MolAADataset(device, self.fp, self.aa)
|
84 |
+
elif self.split is not None:
|
85 |
+
print("Splitting data into train and validation sets from the dataset without considering labels")
|
86 |
+
train_fp, train_aa, val_fp, val_aa = [], [], [], []
|
87 |
+
for i in range(len(self.fp)):
|
88 |
+
if self.split[i] == "train":
|
89 |
+
train_fp.append(self.fp[i])
|
90 |
+
train_aa.append(self.aa[i])
|
91 |
+
|
92 |
+
elif self.split[i] == "val":
|
93 |
+
val_fp.append(self.fp[i])
|
94 |
+
val_aa.append(self.aa[i])
|
95 |
+
|
96 |
+
train_dataset = MolAADataset(device, train_fp, train_aa)
|
97 |
+
val_dataset = MolAADataset(device, val_fp, val_aa)
|
98 |
+
|
99 |
+
print(f"Train: {len(train_fp)}, Validation: {len(val_fp)}")
|
100 |
+
|
101 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
|
102 |
+
validation_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle)
|
103 |
+
return train_loader, validation_loader
|
104 |
+
|
105 |
+
else:
|
106 |
+
print("Splitting data into train and validation sets from the dataset")
|
107 |
+
train_fp, train_aa, val_fp, val_aa = [], [], [], []
|
108 |
+
for i in range(len(self.fp)):
|
109 |
+
if self.split[i] == "train":
|
110 |
+
if include_negatives and self.label[i] == 0:
|
111 |
+
train_fp.append(self.fp[i])
|
112 |
+
train_aa.append(self.aa[i] * -1)
|
113 |
+
elif self.label[i] == 1:
|
114 |
+
train_fp.append(self.fp[i])
|
115 |
+
train_aa.append(self.aa[i])
|
116 |
+
elif self.split[i] == "val":
|
117 |
+
if include_negatives and self.label[i] == 0:
|
118 |
+
val_fp.append(self.fp[i])
|
119 |
+
val_aa.append(self.aa[i] * -1)
|
120 |
+
elif self.label[i] == 1:
|
121 |
+
val_fp.append(self.fp[i])
|
122 |
+
val_aa.append(self.aa[i])
|
123 |
+
|
124 |
+
train_dataset = MolAADataset(device, train_fp, train_aa)
|
125 |
+
val_dataset = MolAADataset(device, val_fp, val_aa)
|
126 |
+
|
127 |
+
print(f"Train: {len(train_fp)}, Validation: {len(val_fp)}")
|
128 |
+
|
129 |
+
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle)
|
130 |
+
validation_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle)
|
131 |
+
return train_loader, validation_loader
|
132 |
+
|
133 |
+
if validation_split is not None:
|
134 |
+
print("Splitting data into train and validation by fractionation from the dataset")
|
135 |
+
dataset_size = len(dataset)
|
136 |
+
indices = list(range(dataset_size))
|
137 |
+
split = int(np.floor(validation_split * dataset_size))
|
138 |
+
if shuffle:
|
139 |
+
np.random.shuffle(indices)
|
140 |
+
train_indices, val_indices = indices[split:], indices[:split]
|
141 |
+
|
142 |
+
train_sampler = SubsetRandomSampler(train_indices)
|
143 |
+
valid_sampler = SubsetRandomSampler(val_indices)
|
144 |
+
|
145 |
+
train_loader = DataLoader(
|
146 |
+
dataset, batch_size=batch_size, sampler=train_sampler
|
147 |
+
)
|
148 |
+
validation_loader = DataLoader(
|
149 |
+
dataset, batch_size=batch_size, sampler=valid_sampler
|
150 |
+
)
|
151 |
+
return train_loader, validation_loader
|
152 |
+
|
153 |
+
else:
|
154 |
+
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
|
155 |
+
return train_loader, None
|
156 |
+
|
157 |
+
|
158 |
+
class MolAADataset(Dataset):
|
159 |
+
def __init__(self, device, mol, aa):
|
160 |
+
self.mol = mol
|
161 |
+
self.aa = aa
|
162 |
+
self.device = device
|
163 |
+
|
164 |
+
def __len__(self):
|
165 |
+
"""
|
166 |
+
Method necessary for Pytorch training
|
167 |
+
"""
|
168 |
+
return len(self.mol)
|
169 |
+
|
170 |
+
def __getitem__(self, idx):
|
171 |
+
"""
|
172 |
+
Method necessary for Pytorch training
|
173 |
+
"""
|
174 |
+
mol_sample = torch.tensor(self.mol[idx], dtype=torch.float32)
|
175 |
+
aa_sample = torch.tensor(self.aa[idx], dtype=torch.float32)
|
176 |
+
|
177 |
+
mol_sample = mol_sample.to(self.device)
|
178 |
+
aa_sample = aa_sample.to(self.device)
|
179 |
+
|
180 |
+
return mol_sample, aa_sample
|
model/stash/14062024_0910/history.json
ADDED
Binary file (3.33 kB). View file
|
|
model/stash/14062024_0910/log.txt
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
----------------
|
2 |
+
Run description: Manual param optim
|
3 |
+
----------------
|
4 |
+
message: yes
|
5 |
+
path: all_drugbank_smiles_sequence_prost_preprocessor.pkl
|
6 |
+
load_preprocessor: True
|
7 |
+
radius: 2
|
8 |
+
n_bits: 1024
|
9 |
+
num_workers: 64
|
10 |
+
enc_n_neurons: 4096
|
11 |
+
enc_n_layers: 3
|
12 |
+
proj_n_neurons: 2048
|
13 |
+
proj_n_layers: 1
|
14 |
+
embedding_dim: 512
|
15 |
+
act_function: relu
|
16 |
+
aa_emb_size: 1024
|
17 |
+
loss_weight: 0.005
|
18 |
+
batch_size: 4096
|
19 |
+
epochs: 250
|
20 |
+
optimizer: adamw
|
21 |
+
learning_rate: 0.0003
|
22 |
+
beta_1: 0.9
|
23 |
+
beta_2: 0.999
|
24 |
+
weight_decay: 5e-05
|
25 |
+
step_size: 10
|
26 |
+
gamma: 0.1
|
27 |
+
include_negatives: False
|
28 |
+
hyperparameter_tuning: False
|
29 |
+
val_split: 0.1
|
30 |
+
aa_embedding: prost_t5
|
31 |
+
model_type: barlow_twins
|
32 |
+
device: cuda:0
|
33 |
+
msg: Manual param optim
|
34 |
+
start: 1718356109.3235965
|
35 |
+
data: <preprocessor.Preprocessor object at 0x72f2d495eb10>
|
36 |
+
train: <torch.utils.data.dataloader.DataLoader object at 0x72f2d3a66d50>
|
37 |
+
val: <torch.utils.data.dataloader.DataLoader object at 0x72f2d480e7b0>
|
38 |
+
file: <_io.BufferedReader name='all_drugbank_smiles_sequence_prost_preprocessor.pkl'>
|
39 |
+
t_preprocessing: 0
|
40 |
+
model: <barlow_twins.BarlowTwins object at 0x72f2d7652540>
|
41 |
+
t_model: 1
|
model/stash/14062024_0910/params.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:065b380d18b2c40bfe031b14480665e5603fcaf06a731f8bc0ec92d829bb2169
|
3 |
+
size 423
|
model/stash/14062024_0910/weights.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55014d6bc054a1aefc22e9c893deaf25939a639efa63f46e2083ff602a5961f1
|
3 |
+
size 340300017
|
model/xgb_models/14062024_0910_barlowdti_xxl_model.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_BIOSNAP_full_data_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1481be9c69558a91c41d65970ba60ace4cb685a4c90b03be37a813b9f1abc96
|
3 |
+
size 27471157
|
model/xgb_models/xgb_model_BIOSNAP_missing_data_70_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_BIOSNAP_missing_data_80_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ab4553ac67b4d75b85eae69c6a19daaad8c6575c3d01252dc8b58682656551b
|
3 |
+
size 12831515
|
model/xgb_models/xgb_model_BIOSNAP_missing_data_90_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_BIOSNAP_missing_data_95_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_BIOSNAP_unseen_drug_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3992b670436e6e2c728eade63581c1962f7cc546b81fb61cd43b6f9eb426f17
|
3 |
+
size 40338690
|
model/xgb_models/xgb_model_BIOSNAP_unseen_protein_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:557742dd11578818bbe6454c946ab2d5a5846556457d22c89cdbf5b47bd34831
|
3 |
+
size 18191873
|
model/xgb_models/xgb_model_BindingDB_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84e911499ec13f38e1edc4b006faf2ef3e827d1d7d0fd53f481e0e41c82d59c1
|
3 |
+
size 24742914
|
model/xgb_models/xgb_model_DAVIS_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_nature_mach_intel_BindingDB_cluster_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_nature_mach_intel_BindingDB_protein_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4a4b08241bf5779e9ef688b6c5a452ac13f4a67480ec6c17cc203ddd35ab7f7
|
3 |
+
size 16983875
|
model/xgb_models/xgb_model_nature_mach_intel_BindingDB_random_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef54574bb754850ec34c0769df1222c6087541fc5e5bb3e17653982e079fb440
|
3 |
+
size 64523467
|
model/xgb_models/xgb_model_nature_mach_intel_BindingDB_scaffold_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:716944cd5a88e6b7dd062a3c9cc331980908541d1b8039f321bdda0112c6668d
|
3 |
+
size 25668977
|
model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_cluster_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_protein_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_random_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faaa3a7fcb8efd23876b23b9a07620bd4ca007d05c354e6bfd2c413f3244402b
|
3 |
+
size 18444715
|
model/xgb_models/xgb_model_nature_mach_intel_BioSNAP_scaffold_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_nature_mach_intel_Human_protein_14062024_0910_bt_optimized_0.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e97db0190ff7a15820982d35191f0092319801ea2992c2ef545b9028a8d2ca1
|
3 |
+
size 12630195
|
model/xgb_models/xgb_model_nature_mach_intel_Human_random_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/xgb_models/xgb_model_nature_mach_intel_Human_scaffold_14062024_0910_bt_optimized_0.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Babel==2.14.0
|
2 |
+
biopython==1.83
|
3 |
+
chembl-structure-pipeline==1.2.2
|
4 |
+
ConfigSpace==0.7.1
|
5 |
+
cycler==0.12.1
|
6 |
+
dask==2024.5.1
|
7 |
+
joblib==1.4.0
|
8 |
+
keras==3.4.1
|
9 |
+
numpy==1.26.4
|
10 |
+
optuna==3.6.1
|
11 |
+
pandas==2.2.2
|
12 |
+
plotly
|
13 |
+
rdkit==2023.9.5
|
14 |
+
scikit-learn==1.4.2
|
15 |
+
scipy==1.13.0
|
16 |
+
seaborn==0.13.2
|
17 |
+
sentencepiece==0.2.0
|
18 |
+
shap==0.46.0
|
19 |
+
smac==2.1.0
|
20 |
+
tensorflow==2.17.0
|
21 |
+
torch==2.4.0
|
22 |
+
tqdm==4.66.2
|
23 |
+
transformers==4.41.0
|
24 |
+
umap==0.1.1
|
25 |
+
xgboost==2.0.3
|
utils/__init__.py
ADDED
File without changes
|
utils/chem.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import rdkit
|
2 |
+
from rdkit import Chem, DataStructs
|
3 |
+
from rdkit.Chem import AllChem
|
4 |
+
from typing import *
|
5 |
+
import numpy as np
|
6 |
+
from rdkit import RDLogger
|
7 |
+
|
8 |
+
RDLogger.DisableLog("rdApp.*")
|
9 |
+
|
10 |
+
|
11 |
+
def try_or_none(func, *args, **kwargs):
|
12 |
+
try:
|
13 |
+
return func(*args, **kwargs)
|
14 |
+
except:
|
15 |
+
return None
|
16 |
+
|
17 |
+
|
18 |
+
def get_smiles(mols: List[rdkit.Chem.rdchem.Mol]) -> List[str]:
|
19 |
+
"""
|
20 |
+
Gets list of smiles from list of rdkit molecules
|
21 |
+
"""
|
22 |
+
return [Chem.MolToSmiles(x) for x in mols]
|
23 |
+
|
24 |
+
|
25 |
+
def get_mols(smiles: List[str]) -> List[rdkit.Chem.rdchem.Mol]:
|
26 |
+
"""
|
27 |
+
Gets list of rdkit molecules from list of smiles
|
28 |
+
"""
|
29 |
+
return [Chem.MolFromSmiles(x) for x in smiles]
|
30 |
+
|
31 |
+
|
32 |
+
def get_fp(
|
33 |
+
mols: List[rdkit.Chem.rdchem.Mol],
|
34 |
+
radius: int = 2,
|
35 |
+
nBits: int = 1024,
|
36 |
+
useFeatures: bool = False,
|
37 |
+
):
|
38 |
+
"""
|
39 |
+
Computes ECFP/FCFP from list of RDKIT mols
|
40 |
+
"""
|
41 |
+
|
42 |
+
output = np.empty(len(mols), dtype=object)
|
43 |
+
|
44 |
+
for i, mol in enumerate(mols):
|
45 |
+
output[i] = AllChem.GetMorganFingerprintAsBitVect(
|
46 |
+
mol,
|
47 |
+
radius=radius,
|
48 |
+
nBits=nBits,
|
49 |
+
useFeatures=useFeatures,
|
50 |
+
)
|
51 |
+
|
52 |
+
return output
|
53 |
+
|
54 |
+
|
55 |
+
def store_fp(fps: List, nBits: int = 1024):
|
56 |
+
"""
|
57 |
+
Stores list of RDKIT sparse vectors in numpy array using C data structures
|
58 |
+
"""
|
59 |
+
|
60 |
+
array = np.empty((len(fps), nBits), dtype=np.float32)
|
61 |
+
for i in range(len(array)):
|
62 |
+
DataStructs.ConvertToNumpyArray(fps[i], array[i])
|
63 |
+
|
64 |
+
return array
|
utils/parallel.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
import numpy as np
|
3 |
+
import psutil
|
4 |
+
from typing import *
|
5 |
+
|
6 |
+
|
7 |
+
def parallel(function: Callable, n_jobs: int, x: List, *args) -> List:
|
8 |
+
"""Higher order function to run other functions on multiple processes
|
9 |
+
|
10 |
+
Simple parallelization utility, slices the input list x in chunks and
|
11 |
+
executes the function on each chunk in different processes. Not suited
|
12 |
+
for functions that have already multithreading/processing implemented.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
function: callable to run on different processes
|
16 |
+
n_jobs: how many cores to use
|
17 |
+
x: list (M,) to use as input for function
|
18 |
+
*args: optional arguments for function
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Object (M,) containing the output of function. Content and type depend
|
22 |
+
on function. If function returns list, then parallel will also return
|
23 |
+
a list. If function returns a numpy array, then parallel will return an
|
24 |
+
array.
|
25 |
+
"""
|
26 |
+
|
27 |
+
# check that parallelization is required. n_jobs might be passed as 1 by
|
28 |
+
# i.e. Dataset methods if they notice that the loaded HTS is too large
|
29 |
+
# to be used on different cores.
|
30 |
+
if n_jobs > 1:
|
31 |
+
# split list in chunks
|
32 |
+
chunks = split_list(x, n_jobs)
|
33 |
+
|
34 |
+
# create list of tuples containing the chunks and *args
|
35 |
+
args = stitch_args(chunks, args)
|
36 |
+
|
37 |
+
# create multiprocessing pool and run function on chunks
|
38 |
+
pool = multiprocessing.Pool(n_jobs)
|
39 |
+
output = pool.starmap(function, args)
|
40 |
+
pool.close()
|
41 |
+
|
42 |
+
# unroll output (list of function outputs) into a single object
|
43 |
+
# of size M
|
44 |
+
if isinstance(output[0], list):
|
45 |
+
unrolled = [x for k in output for x in k]
|
46 |
+
elif isinstance(output[0], np.ndarray):
|
47 |
+
unrolled = np.concatenate(output, axis=0)
|
48 |
+
|
49 |
+
else:
|
50 |
+
# run function normally
|
51 |
+
unrolled = function(x, *args)
|
52 |
+
|
53 |
+
return unrolled
|
54 |
+
|
55 |
+
|
56 |
+
def stitch_args(chunks: List[List], args: Tuple) -> List[Tuple]:
|
57 |
+
"""
|
58 |
+
Stitches together the chunks to be run in parallel and optional function
|
59 |
+
arguments into tuples
|
60 |
+
"""
|
61 |
+
output = [[x] for x in chunks]
|
62 |
+
for i in range(len(output)):
|
63 |
+
for j in range(len(args)):
|
64 |
+
output[i].append(args[j])
|
65 |
+
|
66 |
+
return [tuple(x) for x in output]
|
67 |
+
|
68 |
+
|
69 |
+
def split_list(x: List, n_jobs: int) -> List[List]:
|
70 |
+
"""
|
71 |
+
Converts a list into a list of lists of size n_jobs.
|
72 |
+
"""
|
73 |
+
idxs = np.array_split(range(len(x)), n_jobs)
|
74 |
+
output = [0] * n_jobs
|
75 |
+
for i in range(n_jobs):
|
76 |
+
output[i] = [x[k] for k in idxs[i]]
|
77 |
+
|
78 |
+
return output
|
utils/sequence.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import numpy as np
|
3 |
+
# from bio_embeddings.embed import SeqVecEmbedder, ProtTransBertBFDEmbedder, ProtTransT5XLU50Embedder
|
4 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
5 |
+
import torch
|
6 |
+
import re
|
7 |
+
import concurrent.futures
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import multiprocessing
|
10 |
+
from multiprocessing import Pool
|
11 |
+
|
12 |
+
|
13 |
+
ENCODERS = {
|
14 |
+
# "seqvec": SeqVecEmbedder(),
|
15 |
+
# "prottrans_bert_bfd": ProtTransBertBFDEmbedder(),
|
16 |
+
# "prottrans_t5_xl_u50": ProtTransT5XLU50Embedder(),
|
17 |
+
"prot_t5": {
|
18 |
+
"tokenizer": T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False),
|
19 |
+
"model": T5EncoderModel.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc')
|
20 |
+
},
|
21 |
+
"prost_t5": {
|
22 |
+
"tokenizer": T5Tokenizer.from_pretrained("Rostlab/ProstT5", do_lower_case=False),
|
23 |
+
"model": T5EncoderModel.from_pretrained("Rostlab/ProstT5")
|
24 |
+
}
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def drugbank2smiles(drugbank_id):
|
29 |
+
url = f"https://go.drugbank.com/drugs/{drugbank_id}.smiles"
|
30 |
+
response = requests.get(url)
|
31 |
+
|
32 |
+
if response.status_code == 200:
|
33 |
+
return response.text
|
34 |
+
else:
|
35 |
+
# print(f"Failed to get SMILES for {drugbank_id}")
|
36 |
+
return None
|
37 |
+
|
38 |
+
|
39 |
+
def uniprot2sequence(uniprot_id):
|
40 |
+
url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.fasta"
|
41 |
+
response = requests.get(url)
|
42 |
+
|
43 |
+
if response.status_code == 200:
|
44 |
+
# Extract sequence from FASTA format
|
45 |
+
sequence = "".join(response.text.split("\n")[1:])
|
46 |
+
return sequence
|
47 |
+
else:
|
48 |
+
# print(f"Failed to get sequence for {uniprot_id}")
|
49 |
+
return None
|
50 |
+
|
51 |
+
|
52 |
+
def encode_sequences(sequences: list, encoder: str):
|
53 |
+
if encoder not in ENCODERS.keys():
|
54 |
+
raise ValueError(f"Invalid encoder: {encoder}")
|
55 |
+
|
56 |
+
model = ENCODERS[encoder]["model"]
|
57 |
+
tokenizer = ENCODERS[encoder]["tokenizer"]
|
58 |
+
|
59 |
+
# Cache for storing encoded sequences
|
60 |
+
cache = {}
|
61 |
+
|
62 |
+
def encode_sequence(sequence: str):
|
63 |
+
if sequence is None:
|
64 |
+
return None
|
65 |
+
if len(sequence) <= 3:
|
66 |
+
raise ValueError(f"Invalid sequence: {sequence}")
|
67 |
+
# Check if the sequence is already in the cache
|
68 |
+
if sequence in cache:
|
69 |
+
return cache[sequence]
|
70 |
+
else:
|
71 |
+
# Encode the sequence and store it in the cache
|
72 |
+
try:
|
73 |
+
encoded_sequence = model.embed(sequence)
|
74 |
+
encoded_sequence = np.mean(encoded_sequence, axis=0)
|
75 |
+
cache[sequence] = encoded_sequence
|
76 |
+
return encoded_sequence
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Failed to encode sequence: {sequence}")
|
79 |
+
print(e)
|
80 |
+
return None
|
81 |
+
|
82 |
+
def encode_sequence_device_failover(sequence: str, function, timeout: int = 120):
|
83 |
+
if sequence is None:
|
84 |
+
return None
|
85 |
+
|
86 |
+
if sequence in cache:
|
87 |
+
return cache[sequence]
|
88 |
+
|
89 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
90 |
+
torch.cuda.empty_cache()
|
91 |
+
|
92 |
+
try:
|
93 |
+
# Try to process using GPU
|
94 |
+
result = function(sequence, device)
|
95 |
+
except RuntimeError as e:
|
96 |
+
print(e)
|
97 |
+
return None
|
98 |
+
if "CUDA out of memory." in str(e):
|
99 |
+
print("Trying on CPU instead.")
|
100 |
+
device = torch.device("cpu")
|
101 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
102 |
+
future = executor.submit(function, sequence, device)
|
103 |
+
try:
|
104 |
+
result = future.result(timeout=timeout)
|
105 |
+
except concurrent.futures.TimeoutError:
|
106 |
+
print(f"CPU encoding timed out.")
|
107 |
+
cache[sequence] = None
|
108 |
+
return None
|
109 |
+
else:
|
110 |
+
cache[sequence] = None
|
111 |
+
raise Exception(e)
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Failed to encode sequence: {sequence}")
|
114 |
+
cache[sequence] = None
|
115 |
+
return None
|
116 |
+
|
117 |
+
cache[sequence] = result
|
118 |
+
return result
|
119 |
+
|
120 |
+
def encode_sequence_hf_3d(sequence, device):
|
121 |
+
sequence_1d_list = [sequence]
|
122 |
+
model.full() if device == "cpu" else model.half()
|
123 |
+
model.to(device)
|
124 |
+
|
125 |
+
ids = tokenizer.batch_encode_plus(
|
126 |
+
sequence_1d_list,
|
127 |
+
add_special_tokens=True,
|
128 |
+
padding="longest",
|
129 |
+
return_tensors="pt"
|
130 |
+
).to(device)
|
131 |
+
|
132 |
+
with torch.no_grad():
|
133 |
+
embedding = model(
|
134 |
+
ids.input_ids,
|
135 |
+
attention_mask=ids.attention_mask
|
136 |
+
)
|
137 |
+
|
138 |
+
# Skip the first token, which is the special token for the entire sequence and mean pool the rest
|
139 |
+
assert embedding.last_hidden_state.shape[0] == 1
|
140 |
+
|
141 |
+
encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
|
142 |
+
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
|
143 |
+
|
144 |
+
assert encoded_sequence.shape[0] == 1024
|
145 |
+
return encoded_sequence
|
146 |
+
|
147 |
+
def encode_sequence_hf(sequence, device):
|
148 |
+
sequence_1d_list = [sequence]
|
149 |
+
model.full() if device == "cpu" else model.half()
|
150 |
+
model.to(device)
|
151 |
+
|
152 |
+
ids = tokenizer.batch_encode_plus(
|
153 |
+
sequence_1d_list,
|
154 |
+
add_special_tokens=True,
|
155 |
+
padding="longest",
|
156 |
+
return_tensors="pt"
|
157 |
+
).to(device)
|
158 |
+
|
159 |
+
with torch.no_grad():
|
160 |
+
embedding = model(
|
161 |
+
ids.input_ids,
|
162 |
+
attention_mask=ids.attention_mask
|
163 |
+
)
|
164 |
+
|
165 |
+
assert embedding.last_hidden_state.shape[0] == 1
|
166 |
+
|
167 |
+
encoded_sequence = embedding.last_hidden_state[0, :-1, :]
|
168 |
+
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
|
169 |
+
|
170 |
+
assert encoded_sequence.shape[0] == 1024
|
171 |
+
return encoded_sequence
|
172 |
+
|
173 |
+
# Use list comprehension to encode all sequences, utilizing the cache
|
174 |
+
if encoder == "seqvec":
|
175 |
+
raise NotImplementedError("SeqVec is not supported")
|
176 |
+
seq = encoder_function.embed(list(sequences))
|
177 |
+
seq = np.sum(seq, axis=0)
|
178 |
+
|
179 |
+
if encoder == "prost_t5":
|
180 |
+
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
|
181 |
+
# The direction of the translation is indicated by two special tokens:
|
182 |
+
# if you go from AAs to 3Di (or if you want to embed AAs), you need to prepend "<AA2fold>"
|
183 |
+
# if you go from 3Di to AAs (or if you want to embed 3Di), you need to prepend "<fold2AA>"
|
184 |
+
sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
|
185 |
+
seq = [encode_sequence_device_failover(sequence, encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]
|
186 |
+
|
187 |
+
elif encoder == "prot_t5":
|
188 |
+
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
|
189 |
+
seq = [encode_sequence_device_failover(sequence, encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]
|
190 |
+
|
191 |
+
else:
|
192 |
+
raise NotImplementedError("SeqVec is not supported")
|
193 |
+
seq = [encode_sequence(sequence) for sequence in sequences]
|
194 |
+
|
195 |
+
return np.array(seq)
|
196 |
+
|
197 |
+
|
198 |
+
class SequenceEncoder:
|
199 |
+
def __init__(self, encoder: str):
|
200 |
+
if encoder not in ENCODERS:
|
201 |
+
raise ValueError(f"Invalid encoder: {encoder}")
|
202 |
+
self.encoder = encoder
|
203 |
+
self.model = ENCODERS[encoder]["model"]
|
204 |
+
self.tokenizer = ENCODERS[encoder]["tokenizer"]
|
205 |
+
self.cache = {}
|
206 |
+
|
207 |
+
def encode_sequence(self, sequence: str):
|
208 |
+
if sequence is None:
|
209 |
+
return None
|
210 |
+
if len(sequence) <= 3:
|
211 |
+
raise ValueError(f"Invalid sequence: {sequence}")
|
212 |
+
|
213 |
+
if sequence in self.cache:
|
214 |
+
return self.cache[sequence]
|
215 |
+
|
216 |
+
try:
|
217 |
+
encoded_sequence = self.model.embed(sequence)
|
218 |
+
encoded_sequence = np.mean(encoded_sequence, axis=0)
|
219 |
+
self.cache[sequence] = encoded_sequence
|
220 |
+
return encoded_sequence
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Failed to encode sequence: {sequence}")
|
223 |
+
print(e)
|
224 |
+
return None
|
225 |
+
|
226 |
+
def encode_sequence_device_failover(self, sequence: str, function, timeout: int = 5):
|
227 |
+
if sequence is None:
|
228 |
+
return None
|
229 |
+
|
230 |
+
if sequence in self.cache:
|
231 |
+
return self.cache[sequence]
|
232 |
+
|
233 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
234 |
+
torch.cuda.empty_cache()
|
235 |
+
|
236 |
+
try:
|
237 |
+
result = function(sequence, device)
|
238 |
+
except RuntimeError as e:
|
239 |
+
return None
|
240 |
+
print(e)
|
241 |
+
if "CUDA out of memory." in str(e):
|
242 |
+
print("Trying on CPU instead.")
|
243 |
+
device = torch.device("cpu")
|
244 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
245 |
+
future = executor.submit(function, sequence, device)
|
246 |
+
try:
|
247 |
+
result = future.result(timeout=timeout)
|
248 |
+
except:
|
249 |
+
print(f"CPU encoding timed out.")
|
250 |
+
self.cache[sequence] = None
|
251 |
+
return None
|
252 |
+
finally:
|
253 |
+
executor.shutdown(wait=False)
|
254 |
+
else:
|
255 |
+
self.cache[sequence] = None
|
256 |
+
return None
|
257 |
+
except Exception as e:
|
258 |
+
print(f"Failed to encode sequence: {sequence}")
|
259 |
+
self.cache[sequence] = None
|
260 |
+
return None
|
261 |
+
|
262 |
+
self.cache[sequence] = result
|
263 |
+
return result
|
264 |
+
|
265 |
+
def encode_sequence_hf_3d(self, sequence, device):
|
266 |
+
sequence_1d_list = [sequence]
|
267 |
+
self.model.full() if device == "cpu" else self.model.half()
|
268 |
+
self.model.to(device)
|
269 |
+
|
270 |
+
ids = self.tokenizer.batch_encode_plus(
|
271 |
+
sequence_1d_list,
|
272 |
+
add_special_tokens=True,
|
273 |
+
padding="longest",
|
274 |
+
return_tensors="pt"
|
275 |
+
).to(device)
|
276 |
+
|
277 |
+
with torch.no_grad():
|
278 |
+
embedding = self.model(
|
279 |
+
ids.input_ids,
|
280 |
+
attention_mask=ids.attention_mask
|
281 |
+
)
|
282 |
+
|
283 |
+
assert embedding.last_hidden_state.shape[0] == 1
|
284 |
+
|
285 |
+
encoded_sequence = embedding.last_hidden_state[0, 1:-1, :]
|
286 |
+
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
|
287 |
+
|
288 |
+
assert encoded_sequence.shape[0] == 1024
|
289 |
+
return encoded_sequence
|
290 |
+
|
291 |
+
def encode_sequence_hf(self, sequence, device):
|
292 |
+
sequence_1d_list = [sequence]
|
293 |
+
self.model.full() if device == "cpu" else self.model.half()
|
294 |
+
self.model.to(device)
|
295 |
+
|
296 |
+
ids = self.tokenizer.batch_encode_plus(
|
297 |
+
sequence_1d_list,
|
298 |
+
add_special_tokens=True,
|
299 |
+
padding="longest",
|
300 |
+
return_tensors="pt"
|
301 |
+
).to(device)
|
302 |
+
|
303 |
+
with torch.no_grad():
|
304 |
+
embedding = self.model(
|
305 |
+
ids.input_ids,
|
306 |
+
attention_mask=ids.attention_mask
|
307 |
+
)
|
308 |
+
|
309 |
+
assert embedding.last_hidden_state.shape[0] == 1
|
310 |
+
|
311 |
+
encoded_sequence = embedding.last_hidden_state[0, :-1, :]
|
312 |
+
encoded_sequence = encoded_sequence.mean(dim=0).cpu().numpy().flatten()
|
313 |
+
|
314 |
+
assert encoded_sequence.shape[0] == 1024
|
315 |
+
return encoded_sequence
|
316 |
+
|
317 |
+
def encode_sequences(self, sequences: list):
|
318 |
+
if self.encoder == "seqvec":
|
319 |
+
raise NotImplementedError("SeqVec is not supported")
|
320 |
+
seq = self.encoder_function.embed(list(sequences))
|
321 |
+
seq = np.sum(seq, axis=0)
|
322 |
+
|
323 |
+
elif self.encoder == "prost_t5":
|
324 |
+
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
|
325 |
+
sequences = ["<AA2fold>" + " " + s if s.isupper() else "<fold2AA>" + " " + s for s in sequences]
|
326 |
+
seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf_3d) for sequence in tqdm(sequences, desc="Encoding sequences")]
|
327 |
+
|
328 |
+
elif self.encoder == "prot_t5":
|
329 |
+
sequences = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequences]
|
330 |
+
seq = [self.encode_sequence_device_failover(sequence, self.encode_sequence_hf) for sequence in tqdm(sequences, desc="Encoding sequences")]
|
331 |
+
|
332 |
+
else:
|
333 |
+
raise NotImplementedError("SeqVec is not supported")
|
334 |
+
seq = [self.encode_sequence(sequence) for sequence in sequences]
|
335 |
+
|
336 |
+
if any([x is None for x in seq]):
|
337 |
+
return seq
|
338 |
+
else:
|
339 |
+
return np.array(seq)
|