File size: 9,338 Bytes
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd95d22
1646c30
 
 
c154a29
 
 
 
 
626f70a
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c154a29
 
 
 
 
 
 
 
 
 
 
 
1646c30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import json
import random
from tqdm import tqdm

import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, Sampler
import torchaudio
from datasets import load_dataset, load_from_disk
from datasets import Dataset as Dataset_

from einops import rearrange

from model.modules import MelSpec


class HFDataset(Dataset):
    def __init__(
        self,
        hf_dataset: Dataset,
        target_sample_rate = 24_000,
        n_mel_channels = 100,
        hop_length = 256,
    ):
        self.data = hf_dataset
        self.target_sample_rate = target_sample_rate
        self.hop_length = hop_length
        self.mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length)
        
    def get_frame_len(self, index):
        row = self.data[index]
        audio = row['audio']['array']
        sample_rate = row['audio']['sampling_rate']
        return audio.shape[-1] / sample_rate * self.target_sample_rate / self.hop_length

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, index):
        row = self.data[index]
        audio = row['audio']['array']

        # logger.info(f"Audio shape: {audio.shape}")

        sample_rate = row['audio']['sampling_rate']
        duration = audio.shape[-1] / sample_rate

        if duration > 30 or duration < 0.3:
            return self.__getitem__((index + 1) % len(self.data))
        
        audio_tensor = torch.from_numpy(audio).float()
        
        if sample_rate != self.target_sample_rate:
            resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
            audio_tensor = resampler(audio_tensor)
        
        audio_tensor = rearrange(audio_tensor, 't -> 1 t')
        
        mel_spec = self.mel_spectrogram(audio_tensor)
        
        mel_spec = rearrange(mel_spec, '1 d t -> d t')
        
        text = row['text']
        
        return dict(
            mel_spec = mel_spec,
            text = text,
        )


class CustomDataset(Dataset):
    def __init__(
        self,
        custom_dataset: Dataset,
        durations = None,
        target_sample_rate = 24_000,
        hop_length = 256,
        n_mel_channels = 100,
        preprocessed_mel = False,
    ):
        self.data = custom_dataset
        self.durations = durations
        self.target_sample_rate = target_sample_rate
        self.hop_length = hop_length
        self.preprocessed_mel = preprocessed_mel
        if not preprocessed_mel:
            self.mel_spectrogram = MelSpec(target_sample_rate=target_sample_rate, hop_length=hop_length, n_mel_channels=n_mel_channels)

    def get_frame_len(self, index):
        if self.durations is not None:  # Please make sure the separately provided durations are correct, otherwise 99.99% OOM
            return self.durations[index] * self.target_sample_rate / self.hop_length
        return self.data[index]["duration"] * self.target_sample_rate / self.hop_length
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, index):
        row = self.data[index]
        audio_path = row["audio_path"]
        text = row["text"]
        duration = row["duration"]

        if self.preprocessed_mel:
            mel_spec = torch.tensor(row["mel_spec"])

        else:
            audio, source_sample_rate = torchaudio.load(audio_path)

            if duration > 30 or duration < 0.3:
                return self.__getitem__((index + 1) % len(self.data))
            
            if source_sample_rate != self.target_sample_rate:
                resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
                audio = resampler(audio)
            
            mel_spec = self.mel_spectrogram(audio)
            mel_spec = rearrange(mel_spec, '1 d t -> d t')
        
        return dict(
            mel_spec = mel_spec,
            text = text,
        )
    

# Dynamic Batch Sampler

class DynamicBatchSampler(Sampler[list[int]]):
    """ Extension of Sampler that will do the following:
        1.  Change the batch size (essentially number of sequences)
            in a batch to ensure that the total number of frames are less
            than a certain threshold.
        2.  Make sure the padding efficiency in the batch is high.
    """

    def __init__(self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False):
        self.sampler = sampler
        self.frames_threshold = frames_threshold
        self.max_samples = max_samples

        indices, batches = [], []
        data_source = self.sampler.data_source
        
        for idx in tqdm(self.sampler, desc=f"Sorting with sampler... if slow, check whether dataset is provided with duration"):
            indices.append((idx, data_source.get_frame_len(idx)))
        indices.sort(key=lambda elem : elem[1])

        batch = []
        batch_frames = 0
        for idx, frame_len in tqdm(indices, desc=f"Creating dynamic batches with {frames_threshold} audio frames per gpu"):
            if batch_frames + frame_len <= self.frames_threshold and (max_samples == 0 or len(batch) < max_samples):
                batch.append(idx)
                batch_frames += frame_len
            else:
                if len(batch) > 0:
                    batches.append(batch)
                if frame_len <= self.frames_threshold:
                    batch = [idx]
                    batch_frames = frame_len
                else:
                    batch = []
                    batch_frames = 0

        if not drop_last and len(batch) > 0:
            batches.append(batch)

        del indices

        # if want to have different batches between epochs, may just set a seed and log it in ckpt
        # cuz during multi-gpu training, although the batch on per gpu not change between epochs, the formed general minibatch is different
        # e.g. for epoch n, use (random_seed + n)
        random.seed(random_seed)
        random.shuffle(batches)

        self.batches = batches

    def __iter__(self):
        return iter(self.batches)

    def __len__(self):
        return len(self.batches)


# Load dataset

def load_dataset(
        dataset_name: str,
        tokenizer: str = "pinyin",
        dataset_type: str = "CustomDataset", 
        audio_type: str = "raw", 
        mel_spec_kwargs: dict = dict()
        ) -> CustomDataset | HFDataset:
    '''
    dataset_type    - "CustomDataset" if you want to use tokenizer name and default data path to load for train_dataset
                    - "CustomDatasetPath" if you just want to pass the full path to a preprocessed dataset without relying on tokenizer
    '''
        ) -> CustomDataset:
    
    print("Loading dataset ...")

    if dataset_type == "CustomDataset":
        if audio_type == "raw":
            try:
                train_dataset = load_from_disk(f"data/{dataset_name}_{tokenizer}/raw")
            except:
                train_dataset = Dataset_.from_file(f"data/{dataset_name}_{tokenizer}/raw.arrow")
            preprocessed_mel = False
        elif audio_type == "mel":
            train_dataset = Dataset_.from_file(f"data/{dataset_name}_{tokenizer}/mel.arrow")
            preprocessed_mel = True
        with open(f"data/{dataset_name}_{tokenizer}/duration.json", 'r', encoding='utf-8') as f:
            data_dict = json.load(f)
        durations = data_dict["duration"]
        train_dataset = CustomDataset(train_dataset, durations=durations, preprocessed_mel=preprocessed_mel, **mel_spec_kwargs)
        
    elif dataset_type == "CustomDatasetPath":
        try:
            train_dataset = load_from_disk(f"{dataset_name}/raw")
        except:
            train_dataset = Dataset_.from_file(f"{dataset_name}/raw.arrow")
            
        with open(f"{dataset_name}/duration.json", 'r', encoding='utf-8') as f:
            data_dict = json.load(f)
        durations = data_dict["duration"]
        train_dataset = CustomDataset(train_dataset, durations=durations, preprocessed_mel=preprocessed_mel, **mel_spec_kwargs)
            
    elif dataset_type == "HFDataset":
        print("Should manually modify the path of huggingface dataset to your need.\n" +
              "May also the corresponding script cuz different dataset may have different format.")
        pre, post = dataset_name.split("_")
        train_dataset = HFDataset(load_dataset(f"{pre}/{pre}", split=f"train.{post}", cache_dir="./data"),)

    return train_dataset


# collation

def collate_fn(batch):
    mel_specs = [item['mel_spec'].squeeze(0) for item in batch]
    mel_lengths = torch.LongTensor([spec.shape[-1] for spec in mel_specs])
    max_mel_length = mel_lengths.amax()

    padded_mel_specs = []
    for spec in mel_specs:  # TODO. maybe records mask for attention here
        padding = (0, max_mel_length - spec.size(-1))
        padded_spec = F.pad(spec, padding, value = 0)
        padded_mel_specs.append(padded_spec)
    
    mel_specs = torch.stack(padded_mel_specs)

    text = [item['text'] for item in batch]
    text_lengths = torch.LongTensor([len(item) for item in text])

    return dict(
        mel = mel_specs,
        mel_lengths = mel_lengths,
        text = text,
        text_lengths = text_lengths,
    )