File size: 4,363 Bytes
3573cc9
 
 
 
ec90e85
 
 
c49b9cc
3573cc9
 
 
ec90e85
3573cc9
 
520da56
 
3573cc9
 
 
 
 
 
 
520da56
3573cc9
 
 
 
 
 
 
 
 
 
520da56
3573cc9
c241fe7
f89d622
f5808e4
2733653
 
f89d622
3573cc9
f89d622
3573cc9
 
520da56
3573cc9
c241fe7
f435a3d
3573cc9
 
 
 
 
 
 
 
 
 
520da56
3573cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520da56
3573cc9
 
528cec9
520da56
3573cc9
 
 
 
 
 
 
 
528cec9
3573cc9
 
 
 
 
 
 
 
 
 
 
047284f
3573cc9
047284f
3573cc9
047284f
3573cc9
047284f
520da56
 
047284f
3573cc9
 
 
 
 
 
 
 
520da56
3573cc9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.chat_models import ChatOpenAI

from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template, hide_st_style, footer
from langchain_community.llms import HuggingFaceHub
from matplotlib import style


def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    # embeddings = OpenAIEmbeddings()
    print("HuggingFaceInstructEmbeddings")
    model_kwargs = {'device': 'cpu', 'weights_only': True}
    # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs)
    embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    print("FAISS.from_texts")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    print("returning vectorstore")
    return vectorstore


def get_conversation_chain(vectorstore):
    # llm = ChatOpenAI()
    llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature":0.5, "max_length":512})

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    if st.session_state.conversation is None:
        st.error("Please upload PDF data before starting the chat.")
        return

    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Talk with PDF",
                       page_icon="icon.png")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with AI with Custom Data πŸš€")
    user_question = st.text_input("Ask a question about your Data:")

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your Data here  in PDF format and click on 'Process'", accept_multiple_files=True, type=['pdf'])

        if st.button("Process"):
            if pdf_docs is None:
                st.error("Please upload at least one PDF file.")
            else:
                with st.spinner("Processing"):
                    print("get_pdf_text")
                    raw_text = get_pdf_text(pdf_docs)
                    print("get_text_chunks")
                    text_chunks = get_text_chunks(raw_text)
                    print("get_vectorstore")
                    vectorstore = get_vectorstore(text_chunks)
                    print("get_conversation_chain")
                    st.session_state.conversation = get_conversation_chain(
                        vectorstore)
                    print("success")
                    st.success("Your Data has been processed successfully")

    if user_question:
        handle_userinput(user_question)

    st.markdown(hide_st_style, unsafe_allow_html=True)
    st.markdown(footer, unsafe_allow_html=True)


if __name__ == '__main__':
    main()