Muhammad Qasim
commited on
Commit
β’
520da56
1
Parent(s):
dd251ef
version updated
Browse files- .env.example +2 -0
- README.md +6 -0
- app.py +12 -4
.env.example
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
HUGGINGFACEHUB_API_TOKEN=
|
2 |
+
OPENAI_API_KEY=
|
README.md
CHANGED
@@ -38,6 +38,12 @@ Before using the chatbot, ensure you have the following installed:
|
|
38 |
pip install -r requirements.txt
|
39 |
```
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
## Usage π
|
42 |
|
43 |
1. Run the chatbot using the following command:
|
|
|
38 |
pip install -r requirements.txt
|
39 |
```
|
40 |
|
41 |
+
4. Copy .env.example to .env and set your OpenAI & Hugging Face API keys:
|
42 |
+
|
43 |
+
```shell
|
44 |
+
cp .env.example .env
|
45 |
+
```
|
46 |
+
|
47 |
## Usage π
|
48 |
|
49 |
1. Run the chatbot using the following command:
|
app.py
CHANGED
@@ -4,7 +4,7 @@ from PyPDF2 import PdfReader
|
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.chat_models import
|
8 |
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
@@ -12,7 +12,8 @@ from htmlTemplates import css, bot_template, user_template, hide_st_style, foote
|
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
from matplotlib import style
|
14 |
|
15 |
-
|
|
|
16 |
text = ""
|
17 |
for pdf in pdf_docs:
|
18 |
pdf_reader = PdfReader(pdf)
|
@@ -20,6 +21,7 @@ def get_pdf_text(pdf_docs):
|
|
20 |
text += page.extract_text()
|
21 |
return text
|
22 |
|
|
|
23 |
def get_text_chunks(text):
|
24 |
text_splitter = CharacterTextSplitter(
|
25 |
separator="\n",
|
@@ -30,12 +32,14 @@ def get_text_chunks(text):
|
|
30 |
chunks = text_splitter.split_text(text)
|
31 |
return chunks
|
32 |
|
|
|
33 |
def get_vectorstore(text_chunks):
|
34 |
embeddings = OpenAIEmbeddings()
|
35 |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
36 |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
37 |
return vectorstore
|
38 |
|
|
|
39 |
def get_conversation_chain(vectorstore):
|
40 |
llm = ChatOpenAI()
|
41 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
@@ -49,6 +53,7 @@ def get_conversation_chain(vectorstore):
|
|
49 |
)
|
50 |
return conversation_chain
|
51 |
|
|
|
52 |
def handle_userinput(user_question):
|
53 |
if st.session_state.conversation is None:
|
54 |
st.error("Please upload PDF data before starting the chat.")
|
@@ -65,10 +70,11 @@ def handle_userinput(user_question):
|
|
65 |
st.write(bot_template.replace(
|
66 |
"{{MSG}}", message.content), unsafe_allow_html=True)
|
67 |
|
|
|
68 |
def main():
|
69 |
load_dotenv()
|
70 |
st.set_page_config(page_title="Talk with PDF",
|
71 |
-
|
72 |
st.write(css, unsafe_allow_html=True)
|
73 |
|
74 |
if "conversation" not in st.session_state:
|
@@ -92,7 +98,8 @@ def main():
|
|
92 |
raw_text = get_pdf_text(pdf_docs)
|
93 |
text_chunks = get_text_chunks(raw_text)
|
94 |
vectorstore = get_vectorstore(text_chunks)
|
95 |
-
st.session_state.conversation = get_conversation_chain(
|
|
|
96 |
st.success("Your Data has been processed successfully")
|
97 |
|
98 |
if user_question:
|
@@ -101,5 +108,6 @@ def main():
|
|
101 |
st.markdown(hide_st_style, unsafe_allow_html=True)
|
102 |
st.markdown(footer, unsafe_allow_html=True)
|
103 |
|
|
|
104 |
if __name__ == '__main__':
|
105 |
main()
|
|
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
from matplotlib import style
|
14 |
|
15 |
+
|
16 |
+
def get_pdf_text(pdf_docs):
|
17 |
text = ""
|
18 |
for pdf in pdf_docs:
|
19 |
pdf_reader = PdfReader(pdf)
|
|
|
21 |
text += page.extract_text()
|
22 |
return text
|
23 |
|
24 |
+
|
25 |
def get_text_chunks(text):
|
26 |
text_splitter = CharacterTextSplitter(
|
27 |
separator="\n",
|
|
|
32 |
chunks = text_splitter.split_text(text)
|
33 |
return chunks
|
34 |
|
35 |
+
|
36 |
def get_vectorstore(text_chunks):
|
37 |
embeddings = OpenAIEmbeddings()
|
38 |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
39 |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
40 |
return vectorstore
|
41 |
|
42 |
+
|
43 |
def get_conversation_chain(vectorstore):
|
44 |
llm = ChatOpenAI()
|
45 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
|
|
53 |
)
|
54 |
return conversation_chain
|
55 |
|
56 |
+
|
57 |
def handle_userinput(user_question):
|
58 |
if st.session_state.conversation is None:
|
59 |
st.error("Please upload PDF data before starting the chat.")
|
|
|
70 |
st.write(bot_template.replace(
|
71 |
"{{MSG}}", message.content), unsafe_allow_html=True)
|
72 |
|
73 |
+
|
74 |
def main():
|
75 |
load_dotenv()
|
76 |
st.set_page_config(page_title="Talk with PDF",
|
77 |
+
page_icon="icon.png")
|
78 |
st.write(css, unsafe_allow_html=True)
|
79 |
|
80 |
if "conversation" not in st.session_state:
|
|
|
98 |
raw_text = get_pdf_text(pdf_docs)
|
99 |
text_chunks = get_text_chunks(raw_text)
|
100 |
vectorstore = get_vectorstore(text_chunks)
|
101 |
+
st.session_state.conversation = get_conversation_chain(
|
102 |
+
vectorstore)
|
103 |
st.success("Your Data has been processed successfully")
|
104 |
|
105 |
if user_question:
|
|
|
108 |
st.markdown(hide_st_style, unsafe_allow_html=True)
|
109 |
st.markdown(footer, unsafe_allow_html=True)
|
110 |
|
111 |
+
|
112 |
if __name__ == '__main__':
|
113 |
main()
|