Spaces:
Runtime error
Runtime error
File size: 5,145 Bytes
7ba91c7 7f743cf 7ba91c7 51bd313 e32df9f 51bd313 50e1270 51bd313 c7097cf 51bd313 c3f89e4 7ba91c7 c3f89e4 7ba91c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# # Mount Google Drive
# from google.colab import drive
# drive.mount('/content/drive')
import gradio as gr
from transformers import AutoModel, TFAutoModel
# Modèle Hugging Face à partir de l'identifiant du modèle
model_name = "gpt2"
huggingface_model = AutoModel.from_pretrained(model_name)
# SpΓ©cifiez l'identifiant de rΓ©fΓ©rentiel correct sans informations supplΓ©mentaires
repo_name = "motofanacc/monModel"
# Chemin vers les poids de votre modèle dans votre référentiel
model_checkpoint = "main"
# Charger le modèle à partir de Hugging Face Hub
model = TFAutoModel.from_pretrained(repo_name, from_pt=True, model_checkpoint=model_checkpoint)
#a
# # Charger les poids TensorFlow
# tensorflow_weights_path = "motofanacc/GradioChatBot/tree/main/Checkpoints"
# tensorflow_model = TFAutoModel.from_pretrained(tensorflow_weights_path)
def generate_text(model, input_text, max_length=50):
return model.generate(input_text, max_length=max_length)
# preprocessor = keras_nlp.models.GPT2CausalLMPreprocessor.from_preset(
# "gpt2_base_en",
# sequence_length=128,
# )
# gpt2_lm = keras_nlp.models.GPT2CausalLM.from_preset(
# "gpt2_base_en",
# preprocessor=preprocessor,
# )
# gpt2_lm.load_weights('/content/drive/MyDrive/Checkpoints/weights')
# Gradio app
# <a href="https://www.freepik.com/icon/user_456212#fromView=search&term=avatar&track=ais&page=1&position=22&uuid=48125587-eeb5-4fe3-9eb2-f9fe7330f4fe">Icon by Freepik</a>
# <a href="https://www.freepik.com/icon/ai_2814666#fromView=search&term=robot&track=ais&page=1&position=20&uuid=58780fb9-dab6-4fb1-9928-479b2926a242">Icon by Freepik</a>
theme = gr.themes.Soft().set(
background_fill_primary='white',
background_fill_primary_dark='white',
)
with gr.Blocks(theme=theme,css="""
.gradio-container {
background-color: white;
width: 70vw;
}
#chatbot{
background-image: url("https://png.pngtree.com/thumb_back/fh260/background/20201014/pngtree-breast-cancer-awareness-pink-ribbons-background-design-image_417234.jpg");
}
#chatbot .bubble-wrap::-webkit-scrollbar {
width: 20px;
}
#chatbot .bubble-wrap::-webkit-scrollbar-thumb {
background-color: whitesmoke;
border-radius: 20px;
border: 6px solid transparent;
background-clip: content-box;
}
#chatbot .bubble-wrap::-webkit-scrollbar-thumb:hover {
background-color: grey;
}
#chatbot .bubble-wrap::-webkit-scrollbar-track {
background-color: transparent;
}
#chatbot .message p{
text-align: start;
color: white;
}
h1, p {
text-align: center;
color: black;
}
body #footer_note {
text-align: center;
font-size: x-small;
font-weight:bold;
}
.label {
display:none;
}
textarea, .gallery-item, .gallery-item:hover {
color: black;
border: 1px black solid;
background-color: white;
}
.user {
background-color: #374151;
}
.user {
background-color: #111827;
}
.gallery-item:hover {
color: white;
border: 1px black solid;
background-color: black;
}
body gradio-app {
background-color: white;
}
""") as demo:
gr.HTML(f"""
<html>
<body>
<h1>Welcome, I'm CancerBot π€</h1>
<p>Here you can ask all questions about cancer</p>
</body>
</html>
""")
def return_message(message, history, model=huggingface_model, max_length=128):
if len(message) <= 1:
gr.Warning('Please enter a message with more than one character.')
elif len(message) > max_length:
gr.Warning(f"Input should not exceed {max_length} characters.")
else:
cancer_answer = generate_text(model, message)
message = "**You**\n" + message
history.append([message, f"**CancerBot**\n{cancer_answer}"])
return "", history
chatbot = gr.Chatbot(
height="60vh",
bubble_full_width=True,
avatar_images=(["/content/drive/MyDrive/Data/avatar.png", "/content/drive/MyDrive/Data/robot.png"]),
show_copy_button=True,
likeable=True,
layout='bubble',
elem_id='chatbot',
show_label=False,
)
with gr.Row():
input_box = gr.Textbox(placeholder="Message CancerBot...", container=False, scale=9)
submit_btn = gr.Button(value="β¬", scale=1)
submit_btn.click(return_message, [input_box, chatbot],[input_box, chatbot])
examples = gr.Examples(examples=["What is a thyroid cancer ?", "How can I know that I have a lung cancer ?",
"How many types of cancer ?"], inputs=[input_box], label="")
input_box.submit(return_message, [input_box, chatbot],[input_box, chatbot])
gr.HTML(f"""
<html>
<body>
<p id="footer_note">CancerBot is based on cancer documents. Consider checking important information.</p>
</body>
</html>
""")
demo.queue(default_concurrency_limit=34) # 32 students, 2 teachers
demo.launch(share=True) |