Spaces:
Runtime error
Runtime error
File size: 11,148 Bytes
dcde80d ea816ea dcde80d a1150de dcde80d f41473e dcde80d 28ba0c3 84b7b69 dcde80d 53a1055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
from datasets import load_dataset
import re
import numpy as np
dataset = load_dataset("mohamedabdullah/Arabic-unique-words", data_files="ar_vocab.txt")
word_l = re.findall('[^a-zA-Z0-9\s\W]{2,25}', dataset['train']['text'][0])
vocab = set(word_l)
def delete_letter(word):
return [word[:i]+word[i+1:] for i in range(len(word))]
def switch_letter(word):
switch_l = []
for i in range(len(word)-1):
w_l = re.findall('\w', word)
if i-1 < 0:
w_l[i:i+2] = w_l[i+1::-1]
else:
w_l[i:i+2] = w_l[i+1:i-1:-1]
switch_l.append(''.join(w_l))
return switch_l
def replace_letter(word):
letters = 'ابتةثجحخدذرزسشصضطظعغفقكلمنهويءآأؤإئ'
replace_set = set()
for i in range(len(word)):
for l in letters:
new_word = word[:i]+l+word[i+1:]
if new_word == word:
continue
replace_set.add(new_word)
replace_l = sorted(list(replace_set))
return replace_l
def insert_letter(word):
letters = 'ابتةثجحخدذرزسشصضطظعغفقكلمنهويءآأؤإئ'
insert_l = []
for i in range(len(word)+1):
for l in letters:
new_word = word[:i]+l+word[i:]
insert_l.append(new_word)
return insert_l
def edit_one_letter(word, allow_switches = True):
edit_one_set = delete_letter(word)+insert_letter(word)+replace_letter(word)
if allow_switches:
edit_one_set += switch_letter(word)
return set(edit_one_set)
def edit_two_letters(word, allow_switches = True):
edit_two_set = []
edit_one_set = edit_one_letter(word)
for edit in edit_one_set:
edit_two_set += edit_one_letter(edit)
return set(edit_two_set) | set(edit_one_set)
def get_corrections(word, vocab):
suggestions = []
correct_word_suggest = [word] if word in vocab else []
edit_one_letter_suggest = list(filter(lambda item: item in vocab, list(edit_one_letter(word))))
edit_two_letter_suggest = list(filter(lambda item: item in vocab, list(edit_two_letters(word))))
suggestions = correct_word_suggest or edit_one_letter_suggest or edit_two_letter_suggest or ['لم يتم العثور علي إقتراحات مناسبة لهذه الكلمة']
return set(suggestions)
def min_edit_distance(source, target, ins_cost = 1, del_cost = 1, rep_cost = 2):
m = len(source)
n = len(target)
D = np.zeros((m+1, n+1), dtype=int)
for row in range(1, m+1):
D[row,0] = D[row-1,0]+del_cost
for col in range(1, n+1):
D[0,col] = D[0, col-1]+ins_cost
for row in range(1, m+1):
for col in range(1, n+1):
r_cost = rep_cost
if source[row-1] == target[col-1]:
r_cost = 0
D[row,col] = np.min([D[row-1,col]+del_cost, D[row,col-1]+ins_cost, D[row-1,col-1]+r_cost])
med = D[m,n]
return med
def get_suggestions(corrections, word):
distance = []
suggest = []
for correction in corrections:
source = word
target = correction
min_edits = min_edit_distance(source, target)
distance.append(min_edits)
suggest.append(correction)
suggest_result = list(map(lambda idx: suggest[idx], np.argsort(distance)))
return suggest_result
def ar_spelling_checker(text):
word_l = re.findall('\w{3,}', text)
result = {}
for word in word_l:
tmp_corrections = []
if not word in vocab:
tmp_corrections = get_corrections(word, vocab)
if len(tmp_corrections) == 0:
continue
result[word] = get_suggestions(tmp_corrections, word)
output = '''<style>
.content{
direction: rtl;
}
.word{
color: #842029;
background-color: #f8d7da;
border-color: #f5c2c7;
padding: 10px 20px;
display: inline-block;
direction: rtl;
font-size: 15px;
font-weight: 500;
margin-bottom: 15px;
box-sizing: border-box;
border: 1px solid transparent;
border-radius: 0.25rem;
}
.suggest{
color: #0f5132;
background-color: #d1e7dd;
border-color: #badbcc;
display: inline-block;
margin-right: 5px;
}
.separator{
height:3px;
background: #CCC;
margin-bottom: 15px;
}
.msg{
color: #0f5132;
background-color: #d1e7dd;
border-color: #badbcc;
border: 1px solid transparent;
border-radius: 0.25rem;
padding: 15px 20px;
direction: rtl;
font-size: 20px;
font-weight: 500;
text-align: center;
}
</style>'''
output += '<div class="content">'
if len(result.keys()) == 0:
output += '<div class="msg">لا توجد أخطاء إملائية 🤗</div>'
for word in result.keys():
output += f'<div class="word">{word}</div><br />'
for suggest in result[word]:
output += f'<div class="word suggest">{suggest}</div>'
output += '<div class="separator"></div>'
output += '</div>'
return output
with gr.Blocks(css="""
#input{direction: rtl;}
#component-112{height: 30px;}
.gr-form{margin-top: 15px;}
.gr-text-input{font-size: 17px; height:50px; padding: 0.725rem;}
.text-gray-500{font-size: 16px; margin-bottom: 13px;}
.gr-button{color: #084298; background-color: #cfe2ff; border-color: #b6d4fe;
border: 1px solid transparent; border-radius: 0.25rem;
padding: 15px 20px; font-size: 20px; font-weight: 500; font-family: 'IBM Plex Mono';}
.output-html{min-height: 2rem;}
.title{text-align: center;font-size: 25px;margin-top: 13px;position: absolute;width:100%;
line-height: 1.5;font-family: 'IBM Plex Mono';}
.desc{text-align: center; font-size: 17px; font-family: 'IBM Plex Mono'; margin-top: 46px;}""") as demo:
intro = gr.HTML('<h1 class="title">Arabic Spelling Checker 🤗</h1>')
description = gr.HTML('<p class="desc">Web-based app to detect spelling mistakes in Arabic words using dynamic programming</p>')
text = gr.Textbox(label="النص", elem_id="input")
btn = gr.Button("Spelling Check")
output = gr.HTML()
btn.click(ar_spelling_checker, [text], output)
demo.launch(inline=False) |