Spaces:
Runtime error
Runtime error
mohamedabdullah
commited on
Commit
•
dcde80d
1
Parent(s):
5223f7d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
import re
|
4 |
+
|
5 |
+
dataset = load_dataset("mohamedabdullah/Arabic-unique-words", data_files="ar_vocab.txt")
|
6 |
+
word_l = re.findall('[^a-zA-Z0-9\s\W]{2,25}', dataset['train']['text'][0])
|
7 |
+
vocab = set(word_l)
|
8 |
+
|
9 |
+
def delete_letter(word):
|
10 |
+
return [word[:i]+word[i+1:] for i in range(len(word))]
|
11 |
+
|
12 |
+
def switch_letter(word):
|
13 |
+
switch_l = []
|
14 |
+
|
15 |
+
for i in range(len(word)-1):
|
16 |
+
w_l = re.findall('\w', word)
|
17 |
+
if i-1 < 0:
|
18 |
+
w_l[i:i+2] = w_l[i+1::-1]
|
19 |
+
else:
|
20 |
+
w_l[i:i+2] = w_l[i+1:i-1:-1]
|
21 |
+
|
22 |
+
switch_l.append(''.join(w_l))
|
23 |
+
|
24 |
+
return switch_l
|
25 |
+
|
26 |
+
def replace_letter(word):
|
27 |
+
letters = 'ابتةثجحخدذرزسشصضطظعغفقكلمنهويءآأؤإئ'
|
28 |
+
|
29 |
+
replace_set = set()
|
30 |
+
|
31 |
+
for i in range(len(word)):
|
32 |
+
for l in letters:
|
33 |
+
new_word = word[:i]+l+word[i+1:]
|
34 |
+
if new_word == word:
|
35 |
+
continue
|
36 |
+
replace_set.add(new_word)
|
37 |
+
|
38 |
+
replace_l = sorted(list(replace_set))
|
39 |
+
|
40 |
+
return replace_l
|
41 |
+
|
42 |
+
def insert_letter(word):
|
43 |
+
letters = 'ابتةثجحخدذرزسشصضطظعغفقكلمنهويءآأؤإئ'
|
44 |
+
insert_l = []
|
45 |
+
|
46 |
+
for i in range(len(word)+1):
|
47 |
+
for l in letters:
|
48 |
+
new_word = word[:i]+l+word[i:]
|
49 |
+
insert_l.append(new_word)
|
50 |
+
|
51 |
+
return insert_l
|
52 |
+
|
53 |
+
def edit_one_letter(word, allow_switches = True):
|
54 |
+
edit_one_set = delete_letter(word)+insert_letter(word)+replace_letter(word)
|
55 |
+
|
56 |
+
if allow_switches:
|
57 |
+
edit_one_set += switch_letter(word)
|
58 |
+
|
59 |
+
return set(edit_one_set)
|
60 |
+
|
61 |
+
def edit_two_letters(word, allow_switches = True):
|
62 |
+
edit_two_set = []
|
63 |
+
edit_one_set = edit_one_letter(word)
|
64 |
+
|
65 |
+
for edit in edit_one_set:
|
66 |
+
edit_two_set += edit_one_letter(edit)
|
67 |
+
|
68 |
+
return set(edit_two_set) | set(edit_one_set)
|
69 |
+
|
70 |
+
def get_corrections(word, vocab):
|
71 |
+
suggestions = []
|
72 |
+
|
73 |
+
correct_word_suggest = [word] if word in vocab else []
|
74 |
+
edit_one_letter_suggest = list(filter(lambda item: item in vocab, list(edit_one_letter(word))))
|
75 |
+
edit_two_letter_suggest = list(filter(lambda item: item in vocab, list(edit_two_letters(word))))
|
76 |
+
|
77 |
+
suggestions = correct_word_suggest or edit_one_letter_suggest or edit_two_letter_suggest
|
78 |
+
|
79 |
+
return set(suggestions)
|
80 |
+
|
81 |
+
def min_edit_distance(source, target, ins_cost = 1, del_cost = 1, rep_cost = 2):
|
82 |
+
m = len(source)
|
83 |
+
n = len(target)
|
84 |
+
D = np.zeros((m+1, n+1), dtype=int)
|
85 |
+
|
86 |
+
for row in range(1, m+1):
|
87 |
+
D[row,0] = D[row-1,0]+del_cost
|
88 |
+
|
89 |
+
for col in range(1, n+1):
|
90 |
+
D[0,col] = D[0, col-1]+ins_cost
|
91 |
+
|
92 |
+
for row in range(1, m+1):
|
93 |
+
for col in range(1, n+1):
|
94 |
+
r_cost = rep_cost
|
95 |
+
|
96 |
+
if source[row-1] == target[col-1]:
|
97 |
+
r_cost = 0
|
98 |
+
|
99 |
+
D[row,col] = np.min([D[row-1,col]+del_cost, D[row,col-1]+ins_cost, D[row-1,col-1]+r_cost])
|
100 |
+
|
101 |
+
med = D[m,n]
|
102 |
+
|
103 |
+
return med
|
104 |
+
|
105 |
+
def get_suggestions(corrections, word):
|
106 |
+
distance = []
|
107 |
+
suggest = []
|
108 |
+
|
109 |
+
for correction in corrections:
|
110 |
+
source = word
|
111 |
+
target = correction
|
112 |
+
min_edits = min_edit_distance(source, target)
|
113 |
+
|
114 |
+
distance.append(min_edits)
|
115 |
+
suggest.append(correction)
|
116 |
+
|
117 |
+
suggest_result = list(map(lambda idx: suggest[idx], np.argsort(distance)))
|
118 |
+
return suggest_result
|
119 |
+
|
120 |
+
def ar_spelling_checker(text):
|
121 |
+
word_l = re.findall('\w{3,}', text)
|
122 |
+
result = {}
|
123 |
+
|
124 |
+
for word in word_l:
|
125 |
+
if not word in vocab:
|
126 |
+
tmp_corrections = get_corrections(word, vocab)
|
127 |
+
if len(tmp_corrections) == 0:
|
128 |
+
continue
|
129 |
+
result[word] = get_suggestions(tmp_corrections, word)
|
130 |
+
|
131 |
+
output = '''<style>
|
132 |
+
.content{
|
133 |
+
direction: rtl;
|
134 |
+
}
|
135 |
+
.word{
|
136 |
+
color: #842029;
|
137 |
+
background-color: #f8d7da;
|
138 |
+
border-color: #f5c2c7;
|
139 |
+
padding: 10px 20px;
|
140 |
+
display: inline-block;
|
141 |
+
direction: rtl;
|
142 |
+
font-size: 15px;
|
143 |
+
font-weight: 500;
|
144 |
+
margin-bottom: 15px;
|
145 |
+
box-sizing: border-box;
|
146 |
+
border: 1px solid transparent;
|
147 |
+
border-radius: 0.25rem;
|
148 |
+
}
|
149 |
+
|
150 |
+
.suggest{
|
151 |
+
color: #0f5132;
|
152 |
+
background-color: #d1e7dd;
|
153 |
+
border-color: #badbcc;
|
154 |
+
display: inline-block;
|
155 |
+
margin-right: 5px;
|
156 |
+
}
|
157 |
+
|
158 |
+
.separator{
|
159 |
+
height:3px;
|
160 |
+
background: #CCC;
|
161 |
+
margin-bottom: 15px;
|
162 |
+
}
|
163 |
+
|
164 |
+
.msg{
|
165 |
+
color: #0f5132;
|
166 |
+
background-color: #d1e7dd;
|
167 |
+
border-color: #badbcc;
|
168 |
+
border: 1px solid transparent;
|
169 |
+
border-radius: 0.25rem;
|
170 |
+
padding: 15px 20px;
|
171 |
+
direction: rtl;
|
172 |
+
font-size: 20px;
|
173 |
+
font-weight: 500;
|
174 |
+
text-align: center;
|
175 |
+
}
|
176 |
+
</style>'''
|
177 |
+
|
178 |
+
output += '<div class="content">'
|
179 |
+
|
180 |
+
if len(result.keys()) == 0:
|
181 |
+
output += '<div class="msg">لا توجد أخطاء إملائية 🤗</div>'
|
182 |
+
|
183 |
+
for word in result.keys():
|
184 |
+
output += f'<div class="word">{word}</div><br />'
|
185 |
+
for suggest in result[word]:
|
186 |
+
output += f'<div class="word suggest">{suggest}</div>'
|
187 |
+
|
188 |
+
output += '<div class="separator"></div>'
|
189 |
+
|
190 |
+
output += '</div>'
|
191 |
+
|
192 |
+
return output
|
193 |
+
|
194 |
+
with gr.Blocks(css="""#input{direction: rtl;}
|
195 |
+
#component-112{height: 30px;}
|
196 |
+
.gr-form{margin-top: 15px;}
|
197 |
+
.gr-text-input{font-size: 17px; height:50px; padding: 0.725rem;}
|
198 |
+
.text-gray-500{font-size: 16px; margin-bottom: 13px;}
|
199 |
+
.gr-button{color: #084298; background-color: #cfe2ff; border-color: #b6d4fe;
|
200 |
+
border: 1px solid transparent; border-radius: 0.25rem;
|
201 |
+
padding: 15px 20px; font-size: 20px; font-weight: 500; font-family: 'IBM Plex Mono';}
|
202 |
+
.output-html{min-height: 2rem;}
|
203 |
+
.title{text-align: center;font-size: 25px;margin-top: 13px;position: absolute;width:100%;
|
204 |
+
line-height: 1.5;font-family: 'IBM Plex Mono';}
|
205 |
+
.desc{text-align: center; font-size: 17px; font-family: 'IBM Plex Mono'; margin-top: 46px;}""") as demo:
|
206 |
+
|
207 |
+
intro = gr.HTML('<h1 class="title">Arabic Spelling Checker 🤗</h1>')
|
208 |
+
description = gr.HTML('<p class="desc">Web-based app to detect spelling mistakes in Arabic words using dynamic programming</p>')
|
209 |
+
text = gr.Textbox(label="النص", elem_id="input")
|
210 |
+
btn = gr.Button("Spelling Check")
|
211 |
+
output = gr.HTML()
|
212 |
+
|
213 |
+
btn.click(ar_spelling_checker, [text], output)
|
214 |
+
|
215 |
+
demo.launch()
|