File size: 7,567 Bytes
b116026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import json
from PIL import Image
from skimage import io
import gradio as gr
from modelscope_studio import encode_image, decode_image, call_demo_service


yes, no = "是", "否"

def get_size(h, w, max_size=720):
    if min(h, w) > max_size:
        if h > w:
            h, w = int(max_size * h / w), max_size
        else:
            h, w = max_size, int(max_size * w / h)
    return h, w


def inference(img: Image, colorization_option: str, image_denoise_option: str, color_enhance_option: str) -> Image:
    if img is None:
        return None
    w, h = img.size
    h, w = get_size(h, w, 512)
    img = img.resize((w, h))
    
    input_url = encode_image(img)
    res_url = input_url
    
    # image-denoising (optional)
    if image_denoise_option == yes:
        data = {
            "task": "image-denoising",
            "inputs": [
                res_url
            ],
            "parameters":{},
            "urlPaths": {
                "inUrls": [
                    {
                        "value": res_url,
                        "fileType": "png",
                        "type": "image",
                        "displayType": "ImgUploader",
                        "validator": {
                            "accept": "*.jpeg,*.jpg,*.png",
                            "max_resolution": "5000*5000",
                            "max_size": "10m"
                        },
                        "name": "",
                        "title": ""
                    }
                ],
                "outUrls": [
                    {
                        "outputKey": "output_img",
                        "type": "image"
                    }
                ]
            }
        }
        result = call_demo_service(
            path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data))
        print(f"image-denoising result: {result}")
        res_url = result['data']['output_img']

    # image-colorization (optional)
    if colorization_option == yes:
        data = {
            "task": "image-colorization",
            "inputs": [
                res_url
            ],
            "parameters":{},
            "urlPaths": {
                "inUrls": [
                    {
                        "value": res_url,
                        "fileType": "png",
                        "type": "image",
                        "displayType": "ImgUploader",
                        "validator": {
                            "accept": "*.jpeg,*.jpg,*.png",
                            "max_size": "10m",
                            "max_resolution": "5000*5000",
                        },
                        "name": "",
                        "title": ""
                    }
                ],
                "outUrls": [
                    {
                        "outputKey": "output_img",
                        "type": "image"
                    }
                ]
            }
        }
        result = call_demo_service(
            path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data))
        print(f"image-colorization result: {result}")
        res_url = result['data']['output_img']


    # image-portrait-enhancement
    data = {
        "task": "image-portrait-enhancement",
        "inputs": [
            res_url
        ],
        "parameters":{},
        "urlPaths": {
            "inUrls": [
                {
                    "value": res_url,
                    "fileType": "png",
                    "type": "image",
                    "displayType": "ImgUploader",
                    "validator": {
                        "accept": "*.jpeg,*.jpg,*.png",
                        "max_size": "10M",
                        "max_resolution": "2000*2000",
                    },
                    "name": "",
                    "title": ""
                }
            ],
            "outUrls": [
                {
                    "outputKey": "output_img",
                    "type": "image"
                }
            ]
        }
    }
    result = call_demo_service(
        path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data))
    print(f"image-portrait-enhancement result: {result}")
    res_url = result['data']['output_img']

    # image-color-enhancement (optional)
    if color_enhance_option == yes:
        data = {
            "task": "image-color-enhancement",
            "inputs": [
                res_url
            ],
            "parameters":{},
            "urlPaths": {
                "inUrls": [
                    {
                        "value": res_url,
                        "fileType": "png",
                        "type": "image",
                        "displayType": "ImgUploader",
                        "validator": {
                            "accept": "*.jpeg,*.jpg,*.png",
                            "max_size": "10m",
                            "max_resolution": "5000*5000",
                        },
                        "name": "",
                        "title": ""
                    }
                ],
                "outUrls": [
                    {
                        "outputKey": "output_img",
                        "type": "image"
                    }
                ]
            }
        }
        result = call_demo_service(
            path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data))
        print(f"image-color-enhancement result: {result}")
        res_url = result['data']['output_img']


    res_img = decode_image(res_url)

    return res_img


title = "AI老照片修复"
description = '''
输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~
'''
examples = [[os.path.dirname(__file__) + './images/input1.jpg'], 
            [os.path.dirname(__file__) + './images/input2.jpg'], 
            [os.path.dirname(__file__) + './images/input3.jpg'], 
            [os.path.dirname(__file__) + './images/input4.jpg'],
            [os.path.dirname(__file__) + './images/input5.jpg']]

css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}"

with gr.Blocks(title=title, css=css_style) as demo:
    gr.HTML('''
        <div style="text-align: center; max-width: 720px; margin: 0 auto;">
            <img id="overview" alt="overview" src="https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/ModelScope/studio_old_photo_restoration/overview_long.gif" />
        </div>
      ''')
    gr.Markdown(description)
    with gr.Row():
        with gr.Column(scale=2):
            img_input = gr.components.Image(label="图片", type="pil")
            colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes)
            image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no)
            color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no)
            btn = gr.Button("一键修复")
        with gr.Column(scale=3):
            img_output = gr.components.Image(label="图片", type="pil").style(height=600)
    inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option]
    btn.click(fn=inference, inputs=inputs, outputs=img_output)
    gr.Examples(examples, inputs=img_input)

demo.launch()