File size: 13,942 Bytes
703e263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
from .sd_unet import Timesteps, ResnetBlock, AttentionBlock, PushBlock, DownSampler
from .sdxl_unet import SDXLUNet
from .tiler import TileWorker
from .sd_controlnet import ControlNetConditioningLayer
from collections import OrderedDict



class QuickGELU(torch.nn.Module):

    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)



class ResidualAttentionBlock(torch.nn.Module):

    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        super().__init__()

        self.attn = torch.nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = torch.nn.LayerNorm(d_model)
        self.mlp = torch.nn.Sequential(OrderedDict([
            ("c_fc", torch.nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", torch.nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = torch.nn.LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x



class SDXLControlNetUnion(torch.nn.Module):
    def __init__(self, global_pool=False):
        super().__init__()
        self.time_proj = Timesteps(320)
        self.time_embedding = torch.nn.Sequential(
            torch.nn.Linear(320, 1280),
            torch.nn.SiLU(),
            torch.nn.Linear(1280, 1280)
        )
        self.add_time_proj = Timesteps(256)
        self.add_time_embedding = torch.nn.Sequential(
            torch.nn.Linear(2816, 1280),
            torch.nn.SiLU(),
            torch.nn.Linear(1280, 1280)
        )
        self.control_type_proj = Timesteps(256)
        self.control_type_embedding = torch.nn.Sequential(
            torch.nn.Linear(256 * 8, 1280),
            torch.nn.SiLU(),
            torch.nn.Linear(1280, 1280)
        )
        self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1)

        self.controlnet_conv_in = ControlNetConditioningLayer(channels=(3, 16, 32, 96, 256, 320))
        self.controlnet_transformer = ResidualAttentionBlock(320, 8)
        self.task_embedding = torch.nn.Parameter(torch.randn(8, 320))
        self.spatial_ch_projs = torch.nn.Linear(320, 320)

        self.blocks = torch.nn.ModuleList([
            # DownBlock2D
            ResnetBlock(320, 320, 1280),
            PushBlock(),
            ResnetBlock(320, 320, 1280),
            PushBlock(),
            DownSampler(320),
            PushBlock(),
            # CrossAttnDownBlock2D
            ResnetBlock(320, 640, 1280),
            AttentionBlock(10, 64, 640, 2, 2048),
            PushBlock(),
            ResnetBlock(640, 640, 1280),
            AttentionBlock(10, 64, 640, 2, 2048),
            PushBlock(),
            DownSampler(640),
            PushBlock(),
            # CrossAttnDownBlock2D
            ResnetBlock(640, 1280, 1280),
            AttentionBlock(20, 64, 1280, 10, 2048),
            PushBlock(),
            ResnetBlock(1280, 1280, 1280),
            AttentionBlock(20, 64, 1280, 10, 2048),
            PushBlock(),
            # UNetMidBlock2DCrossAttn
            ResnetBlock(1280, 1280, 1280),
            AttentionBlock(20, 64, 1280, 10, 2048),
            ResnetBlock(1280, 1280, 1280),
            PushBlock()
        ])

        self.controlnet_blocks = torch.nn.ModuleList([
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1)),
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1)),
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1)),
            torch.nn.Conv2d(320, 320, kernel_size=(1, 1)),
            torch.nn.Conv2d(640, 640, kernel_size=(1, 1)),
            torch.nn.Conv2d(640, 640, kernel_size=(1, 1)),
            torch.nn.Conv2d(640, 640, kernel_size=(1, 1)),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)),
            torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)),
        ])

        self.global_pool = global_pool

        # 0 -- openpose
        # 1 -- depth
        # 2 -- hed/pidi/scribble/ted
        # 3 -- canny/lineart/anime_lineart/mlsd
        # 4 -- normal
        # 5 -- segment
        # 6 -- tile
        # 7 -- repaint
        self.task_id = {
            "openpose": 0,
            "depth": 1,
            "softedge": 2,
            "canny": 3,
            "lineart": 3,
            "lineart_anime": 3,
            "tile": 6,
            "inpaint": 7
        }


    def fuse_condition_to_input(self, hidden_states, task_id, conditioning):
        controlnet_cond = self.controlnet_conv_in(conditioning)
        feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
        feat_seq = feat_seq + self.task_embedding[task_id]
        x = torch.stack([feat_seq, torch.mean(hidden_states, dim=(2, 3))], dim=1)
        x = self.controlnet_transformer(x)

        alpha = self.spatial_ch_projs(x[:,0]).unsqueeze(-1).unsqueeze(-1)
        controlnet_cond_fuser = controlnet_cond + alpha

        hidden_states = hidden_states + controlnet_cond_fuser
        return hidden_states
    

    def forward(
        self,
        sample, timestep, encoder_hidden_states,
        conditioning, processor_id, add_time_id, add_text_embeds,
        tiled=False, tile_size=64, tile_stride=32,
        unet:SDXLUNet=None,
        **kwargs
    ):
        task_id = self.task_id[processor_id]

        # 1. time
        t_emb = self.time_proj(timestep).to(sample.dtype)
        t_emb = self.time_embedding(t_emb)
        
        time_embeds = self.add_time_proj(add_time_id)
        time_embeds = time_embeds.reshape((add_text_embeds.shape[0], -1))
        add_embeds = torch.concat([add_text_embeds, time_embeds], dim=-1)
        add_embeds = add_embeds.to(sample.dtype)
        if unet is not None and unet.is_kolors:
            add_embeds = unet.add_time_embedding(add_embeds)
        else:
            add_embeds = self.add_time_embedding(add_embeds)

        control_type = torch.zeros((sample.shape[0], 8), dtype=sample.dtype, device=sample.device)
        control_type[:, task_id] = 1
        control_embeds = self.control_type_proj(control_type.flatten())
        control_embeds = control_embeds.reshape((sample.shape[0], -1))
        control_embeds = control_embeds.to(sample.dtype)
        control_embeds = self.control_type_embedding(control_embeds)
        time_emb = t_emb + add_embeds + control_embeds

        # 2. pre-process
        height, width = sample.shape[2], sample.shape[3]
        hidden_states = self.conv_in(sample)
        hidden_states = self.fuse_condition_to_input(hidden_states, task_id, conditioning)
        text_emb = encoder_hidden_states
        if unet is not None and unet.is_kolors:
            text_emb = unet.text_intermediate_proj(text_emb)
        res_stack = [hidden_states]

        # 3. blocks
        for i, block in enumerate(self.blocks):
            if tiled and not isinstance(block, PushBlock):
                _, _, inter_height, _ = hidden_states.shape
                resize_scale = inter_height / height
                hidden_states = TileWorker().tiled_forward(
                    lambda x: block(x, time_emb, text_emb, res_stack)[0],
                    hidden_states,
                    int(tile_size * resize_scale),
                    int(tile_stride * resize_scale),
                    tile_device=hidden_states.device,
                    tile_dtype=hidden_states.dtype
                )
            else:
                hidden_states, _, _, _ = block(hidden_states, time_emb, text_emb, res_stack)

        # 4. ControlNet blocks
        controlnet_res_stack = [block(res) for block, res in zip(self.controlnet_blocks, res_stack)]

        # pool
        if self.global_pool:
            controlnet_res_stack = [res.mean(dim=(2, 3), keepdim=True) for res in controlnet_res_stack]

        return controlnet_res_stack

    @staticmethod
    def state_dict_converter():
        return SDXLControlNetUnionStateDictConverter()



class SDXLControlNetUnionStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        # architecture
        block_types = [
            "ResnetBlock", "PushBlock", "ResnetBlock", "PushBlock", "DownSampler", "PushBlock",
            "ResnetBlock", "AttentionBlock", "PushBlock", "ResnetBlock", "AttentionBlock", "PushBlock", "DownSampler", "PushBlock",
            "ResnetBlock", "AttentionBlock", "PushBlock", "ResnetBlock", "AttentionBlock", "PushBlock",
            "ResnetBlock", "AttentionBlock", "ResnetBlock", "PushBlock"
        ]

        # controlnet_rename_dict
        controlnet_rename_dict = {
            "controlnet_cond_embedding.conv_in.weight": "controlnet_conv_in.blocks.0.weight",
            "controlnet_cond_embedding.conv_in.bias": "controlnet_conv_in.blocks.0.bias",
            "controlnet_cond_embedding.blocks.0.weight": "controlnet_conv_in.blocks.2.weight",
            "controlnet_cond_embedding.blocks.0.bias": "controlnet_conv_in.blocks.2.bias",
            "controlnet_cond_embedding.blocks.1.weight": "controlnet_conv_in.blocks.4.weight",
            "controlnet_cond_embedding.blocks.1.bias": "controlnet_conv_in.blocks.4.bias",
            "controlnet_cond_embedding.blocks.2.weight": "controlnet_conv_in.blocks.6.weight",
            "controlnet_cond_embedding.blocks.2.bias": "controlnet_conv_in.blocks.6.bias",
            "controlnet_cond_embedding.blocks.3.weight": "controlnet_conv_in.blocks.8.weight",
            "controlnet_cond_embedding.blocks.3.bias": "controlnet_conv_in.blocks.8.bias",
            "controlnet_cond_embedding.blocks.4.weight": "controlnet_conv_in.blocks.10.weight",
            "controlnet_cond_embedding.blocks.4.bias": "controlnet_conv_in.blocks.10.bias",
            "controlnet_cond_embedding.blocks.5.weight": "controlnet_conv_in.blocks.12.weight",
            "controlnet_cond_embedding.blocks.5.bias": "controlnet_conv_in.blocks.12.bias",
            "controlnet_cond_embedding.conv_out.weight": "controlnet_conv_in.blocks.14.weight",
            "controlnet_cond_embedding.conv_out.bias": "controlnet_conv_in.blocks.14.bias",
            "control_add_embedding.linear_1.weight": "control_type_embedding.0.weight",
            "control_add_embedding.linear_1.bias": "control_type_embedding.0.bias",
            "control_add_embedding.linear_2.weight": "control_type_embedding.2.weight",
            "control_add_embedding.linear_2.bias": "control_type_embedding.2.bias",
        }

        # Rename each parameter
        name_list = sorted([name for name in state_dict])
        rename_dict = {}
        block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1}
        last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""}
        for name in name_list:
            names = name.split(".")
            if names[0] in ["conv_in", "conv_norm_out", "conv_out", "task_embedding", "spatial_ch_projs"]:
                pass
            elif name in controlnet_rename_dict:
                names = controlnet_rename_dict[name].split(".")
            elif names[0] == "controlnet_down_blocks":
                names[0] = "controlnet_blocks"
            elif names[0] == "controlnet_mid_block":
                names = ["controlnet_blocks", "9", names[-1]]
            elif names[0] in ["time_embedding", "add_embedding"]:
                if names[0] == "add_embedding":
                    names[0] = "add_time_embedding"
                names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]]
            elif names[0] == "control_add_embedding":
                names[0] = "control_type_embedding"
            elif names[0] == "transformer_layes":
                names[0] = "controlnet_transformer"
                names.pop(1)
            elif names[0] in ["down_blocks", "mid_block", "up_blocks"]:
                if names[0] == "mid_block":
                    names.insert(1, "0")
                block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]]
                block_type_with_id = ".".join(names[:4])
                if block_type_with_id != last_block_type_with_id[block_type]:
                    block_id[block_type] += 1
                last_block_type_with_id[block_type] = block_type_with_id
                while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type:
                    block_id[block_type] += 1
                block_type_with_id = ".".join(names[:4])
                names = ["blocks", str(block_id[block_type])] + names[4:]
                if "ff" in names:
                    ff_index = names.index("ff")
                    component = ".".join(names[ff_index:ff_index+3])
                    component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component]
                    names = names[:ff_index] + [component] + names[ff_index+3:]
                if "to_out" in names:
                    names.pop(names.index("to_out") + 1)
            else:
                print(name, state_dict[name].shape)
                # raise ValueError(f"Unknown parameters: {name}")
            rename_dict[name] = ".".join(names)

        # Convert state_dict
        state_dict_ = {}
        for name, param in state_dict.items():
            if name not in rename_dict:
                continue
            if ".proj_in." in name or ".proj_out." in name:
                param = param.squeeze()
            state_dict_[rename_dict[name]] = param
        return state_dict_
    
    def from_civitai(self, state_dict):
        return self.from_diffusers(state_dict)