Spaces:
Running
Running
pedro-dev
#22
by
pcuenq
HF staff
- opened
- app.py +22 -28
- cache/.keep +0 -0
- converted/.keep +0 -0
app.py
CHANGED
@@ -1,20 +1,17 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
6 |
import gradio as gr
|
7 |
|
8 |
-
from huggingface_hub import
|
9 |
-
from huggingface_hub import snapshot_download
|
10 |
from huggingface_hub import whoami
|
11 |
from huggingface_hub import ModelCard
|
12 |
-
from huggingface_hub import login
|
13 |
from huggingface_hub import scan_cache_dir
|
14 |
from huggingface_hub import logging
|
15 |
|
16 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
17 |
-
|
18 |
from apscheduler.schedulers.background import BackgroundScheduler
|
19 |
|
20 |
from textwrap import dedent
|
@@ -22,23 +19,24 @@ from textwrap import dedent
|
|
22 |
import mlx_lm
|
23 |
from mlx_lm import convert
|
24 |
|
25 |
-
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Type, Union
|
26 |
-
|
27 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def clear_hf_cache_space():
|
30 |
scan = scan_cache_dir()
|
31 |
to_delete = []
|
32 |
for repo in scan.repos:
|
33 |
if repo.repo_type == "model":
|
34 |
-
to_delete.
|
35 |
-
|
36 |
-
scan.delete_revisions(to_delete)
|
37 |
-
|
38 |
print("Cache has been cleared")
|
39 |
|
40 |
def upload_to_hub(path, upload_repo, hf_path, token):
|
41 |
-
|
42 |
card = ModelCard.load(hf_path)
|
43 |
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
44 |
card.data.base_model = hf_path
|
@@ -86,33 +84,29 @@ def upload_to_hub(path, upload_repo, hf_path, token):
|
|
86 |
)
|
87 |
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
|
88 |
|
89 |
-
def process_model(model_id, q_method,oauth_token: gr.OAuthToken | None):
|
90 |
-
|
91 |
if oauth_token.token is None:
|
92 |
raise ValueError("You must be logged in to use MLX-my-repo")
|
93 |
|
94 |
model_name = model_id.split('/')[-1]
|
95 |
-
print(model_name)
|
96 |
username = whoami(oauth_token.token)["name"]
|
97 |
-
print(username)
|
98 |
-
|
99 |
-
# login(token=oauth_token.token, add_to_git_credential=True)
|
100 |
-
|
101 |
try:
|
102 |
-
upload_repo = username
|
103 |
print(upload_repo)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
return (
|
109 |
-
f'Find your repo <a href
|
110 |
"llama.png",
|
111 |
)
|
112 |
except Exception as e:
|
113 |
return (f"Error: {e}", "error.png")
|
114 |
finally:
|
115 |
-
shutil.rmtree("mlx_model", ignore_errors=True)
|
116 |
clear_hf_cache_space()
|
117 |
print("Folder cleaned up successfully!")
|
118 |
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
3 |
+
|
4 |
+
os.environ["HF_HUB_CACHE"] = "cache"
|
5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
6 |
import gradio as gr
|
7 |
|
8 |
+
from huggingface_hub import HfApi
|
|
|
9 |
from huggingface_hub import whoami
|
10 |
from huggingface_hub import ModelCard
|
|
|
11 |
from huggingface_hub import scan_cache_dir
|
12 |
from huggingface_hub import logging
|
13 |
|
14 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
|
15 |
from apscheduler.schedulers.background import BackgroundScheduler
|
16 |
|
17 |
from textwrap import dedent
|
|
|
19 |
import mlx_lm
|
20 |
from mlx_lm import convert
|
21 |
|
|
|
|
|
22 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
23 |
|
24 |
+
# I'm not sure if we need to add more stuff here
|
25 |
+
QUANT_PARAMS = {
|
26 |
+
"Q4": 4,
|
27 |
+
"Q8": 8,
|
28 |
+
}
|
29 |
+
|
30 |
def clear_hf_cache_space():
|
31 |
scan = scan_cache_dir()
|
32 |
to_delete = []
|
33 |
for repo in scan.repos:
|
34 |
if repo.repo_type == "model":
|
35 |
+
to_delete.extend([rev.commit_hash for rev in repo.revisions])
|
36 |
+
scan.delete_revisions(*to_delete).execute()
|
|
|
|
|
37 |
print("Cache has been cleared")
|
38 |
|
39 |
def upload_to_hub(path, upload_repo, hf_path, token):
|
|
|
40 |
card = ModelCard.load(hf_path)
|
41 |
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
42 |
card.data.base_model = hf_path
|
|
|
84 |
)
|
85 |
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
|
86 |
|
87 |
+
def process_model(model_id, q_method, oauth_token: gr.OAuthToken | None):
|
|
|
88 |
if oauth_token.token is None:
|
89 |
raise ValueError("You must be logged in to use MLX-my-repo")
|
90 |
|
91 |
model_name = model_id.split('/')[-1]
|
|
|
92 |
username = whoami(oauth_token.token)["name"]
|
|
|
|
|
|
|
|
|
93 |
try:
|
94 |
+
upload_repo = f"{username}/{model_name}-{q_method}-mlx"
|
95 |
print(upload_repo)
|
96 |
+
with tempfile.TemporaryDirectory(dir="converted") as tmpdir:
|
97 |
+
# The target dir must not exist
|
98 |
+
mlx_path = os.path.join(tmpdir, "mlx")
|
99 |
+
convert(model_id, mlx_path=mlx_path, quantize=True, q_bits=QUANT_PARAMS[q_method])
|
100 |
+
print("Conversion done")
|
101 |
+
upload_to_hub(path=mlx_path, upload_repo=upload_repo, hf_path=model_id, token=oauth_token.token)
|
102 |
+
print("Upload done")
|
103 |
return (
|
104 |
+
f'Find your repo <a href="https://hf.co/{upload_repo}" target="_blank" style="text-decoration:underline">here</a>',
|
105 |
"llama.png",
|
106 |
)
|
107 |
except Exception as e:
|
108 |
return (f"Error: {e}", "error.png")
|
109 |
finally:
|
|
|
110 |
clear_hf_cache_space()
|
111 |
print("Folder cleaned up successfully!")
|
112 |
|
cache/.keep
ADDED
File without changes
|
converted/.keep
ADDED
File without changes
|