File size: 7,305 Bytes
55dc8b1
 
 
 
0f23c4b
55dc8b1
 
e4f39c4
 
 
0f23c4b
8339421
0f23c4b
 
 
 
 
 
 
 
 
b96bd14
 
 
 
 
 
 
0f23c4b
 
55dc8b1
e4f39c4
 
8339421
 
e4f39c4
 
31decce
e4f39c4
 
 
 
8339421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55dc8b1
8339421
 
e4f39c4
 
 
 
 
 
 
 
 
 
55dc8b1
b96bd14
 
 
55dc8b1
 
 
 
b96bd14
 
55dc8b1
 
b96bd14
 
 
 
 
55dc8b1
 
 
 
 
 
 
 
 
 
 
 
 
b96bd14
8339421
 
 
 
 
 
b96bd14
8339421
b96bd14
8339421
 
 
 
31decce
8339421
 
31decce
 
0f23c4b
31decce
0f23c4b
31decce
 
 
 
 
 
 
 
 
 
 
 
55dc8b1
 
31decce
 
 
 
 
 
 
 
 
 
b96bd14
 
 
 
 
31decce
b96bd14
31decce
b96bd14
8339421
 
55dc8b1
 
 
 
 
0f23c4b
31decce
b96bd14
 
55dc8b1
b96bd14
 
 
 
 
 
55dc8b1
 
e4f39c4
b96bd14
55dc8b1
b96bd14
 
 
e4f39c4
b96bd14
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import re
import string

import orjson
import streamlit as st
from annotated_text.util import get_annotated_html

from pipelines.keyphrase_extraction_pipeline import KeyphraseExtractionPipeline
from pipelines.keyphrase_generation_pipeline import KeyphraseGenerationPipeline


@st.cache(allow_output_mutation=True, show_spinner=False)
def load_pipeline(chosen_model):
    if "keyphrase-extraction" in chosen_model:
        return KeyphraseExtractionPipeline(chosen_model)
    elif "keyphrase-generation" in chosen_model:
        return KeyphraseGenerationPipeline(chosen_model)


def extract_keyphrases():
    st.session_state.keyphrases = pipe(st.session_state.input_text)
    st.session_state.history[f"run_{st.session_state.current_run_id}"] = {
        "run_id": st.session_state.current_run_id,
        "model": st.session_state.chosen_model,
        "text": st.session_state.input_text,
        "keyphrases": st.session_state.keyphrases,
    }
    st.session_state.current_run_id += 1


def get_annotated_text(text, keyphrases, color="#d294ff"):
    for keyphrase in keyphrases:
        text = re.sub(
            rf"({keyphrase})([^A-Za-z])",
            rf"$K:{keyphrases.index(keyphrase)}\2",
            text,
            flags=re.I,
            count=1,
        )

    result = []
    for i, word in enumerate(text.split(" ")):
        if "$K" in word and re.search(
            "(\d+)$", word.translate(str.maketrans("", "", string.punctuation))
        ):
            result.append(
                (
                    re.sub(
                        r"\$K:\d+",
                        keyphrases[
                            int(
                                re.search(
                                    "(\d+)$",
                                    word.translate(
                                        str.maketrans("", "", string.punctuation)
                                    ),
                                ).group(1)
                            )
                        ],
                        word,
                    ),
                    "KEY",
                    color,
                )
            )
        else:
            if i == len(st.session_state.input_text.split(" ")) - 1:
                result.append(f" {word}")
            elif i == 0:
                result.append(f"{word} ")
            else:
                result.append(f" {word} ")
    return result


def render_output(layout, runs, reverse=False):
    runs = list(runs.values())[::-1] if reverse else list(runs.values())
    for run in runs:
        layout.markdown(
            f"""
            <p style=\"margin-bottom: 0rem\"><strong>Run:</strong> {run.get('run_id')}</p>
            <p style=\"margin-bottom: 0rem\"><strong>Model:</strong> {run.get('model')}</p>
            """,
            unsafe_allow_html=True,
        )

        if "generation" in run.get("model"):
            abstractive_keyphrases = [
                keyphrase
                for keyphrase in run.get("keyphrases")
                if keyphrase.lower() not in run.get("text").lower()
            ]
            layout.markdown(
                f"<p style=\"margin-bottom: 0rem\"><strong>Absent keyphrases:</strong> {', '.join(abstractive_keyphrases) if abstractive_keyphrases else 'None' }</p>",
                unsafe_allow_html=True,
            )

        result = get_annotated_text(run.get("text"), list(run.get("keyphrases")))
        layout.markdown(
            f"""
            <p style="margin-bottom: 0.5rem"><strong>Text:</strong></p>
            {get_annotated_html(*result)}
            """,
            unsafe_allow_html=True,
        )
        layout.markdown("---")


if "config" not in st.session_state:
    with open("config.json", "r") as f:
        content = f.read()
    st.session_state.config = orjson.loads(content)
    st.session_state.history = {}
    st.session_state.keyphrases = []
    st.session_state.current_run_id = 1

st.set_page_config(
    page_icon="πŸ”‘",
    page_title="Keyphrase extraction/generation with Transformers",
    layout="centered",
)

with open("css/style.css") as f:
    st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

st.header("πŸ”‘ Keyphrase extraction/generation with Transformers")

description = """
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases
from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it.
Currently, classical machine learning methods, that use statistics and linguistics, are widely used
for the extraction process. The fact that these methods have been widely used in the community has
the advantage that there are many easy-to-use libraries. Now with the recent innovations in
deep learning methods (such as recurrent neural networks and transformers, GANS, …),
keyphrase extraction can be improved. These new methods also focus on the semantics and
context of a document, which is quite an improvement.

This space gives you the ability to test around with some keyphrase extraction and generation models.
Keyphrase extraction models are transformers models fine-tuned as a token classification problem where
the tokens in a text are annotated as B (Beginning of a keyphrase), I (Inside a keyphrases), 
and O (Outside a keyhprase).

While keyphrase extraction can only extract keyphrases from a given text. Keyphrase generation models
work a bit differently. Here you use an encoder-decoder model like BART to generate keyphrases from a given text.
These models also have the ability to generate keyphrases, which are not present in the text 🀯.

Do you want to see some magic πŸ§™β€β™‚οΈ? Try it out yourself! πŸ‘‡
"""

st.write(description)

with st.form("keyphrase-extraction-form"):
    selectbox_container, _ = st.columns(2)

    st.session_state.chosen_model = selectbox_container.selectbox(
        "Choose your model:", st.session_state.config.get("models")
    )

    st.markdown(
        f"For more information about the chosen model, please be sure to check out the [πŸ€— Model Card](https://huggingface.co/DeDeckerThomas/{st.session_state.chosen_model})."
    )

    st.session_state.input_text = (
        st.text_area("✍ Input", st.session_state.config.get("example_text"), height=250)
        .replace("\n", " ")
        .strip()
    )

    with st.spinner("Extracting keyphrases..."):
        pressed = st.form_submit_button("Extract")

if pressed and st.session_state.input_text != "":
    with st.spinner("Loading pipeline..."):
        pipe = load_pipeline(
            f"{st.session_state.config.get('model_author')}/{st.session_state.chosen_model}"
        )
    with st.spinner("Extracting keyphrases"):
        extract_keyphrases()
elif st.session_state.input_text == "":
    st.error("The text input is empty πŸ™ƒ Please provide a text in the input field.")

options = st.multiselect(
    "Specify the runs you want to see",
    st.session_state.history.keys(),
    format_func=lambda run_id: f"Run {run_id.split('_')[1]}",
)

if len(st.session_state.history.keys()) > 0:
    if options:
        render_output(
            st,
            {key: st.session_state.history[key] for key in options},
        )
    else:
        render_output(st, st.session_state.history, reverse=True)