File size: 12,457 Bytes
1b8aef5
 
 
10e9b7d
1b8aef5
 
10e9b7d
eccf8e4
3c4371f
1b8aef5
 
 
 
 
 
 
 
 
 
 
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
1b8aef5
 
 
 
 
31243f4
1b8aef5
31243f4
1b8aef5
 
 
 
31243f4
1b8aef5
 
31243f4
1b8aef5
31243f4
 
4021bf3
1b8aef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066853
 
 
 
 
1b8aef5
 
 
 
 
 
 
 
 
 
 
b066853
1b8aef5
b066853
1b8aef5
 
 
b066853
1b8aef5
b066853
1b8aef5
 
 
b066853
1b8aef5
b066853
1b8aef5
 
b066853
1b8aef5
b066853
1b8aef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b066853
1b8aef5
b066853
1b8aef5
 
b066853
1b8aef5
b066853
1b8aef5
 
 
 
b066853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b8aef5
31243f4
 
 
 
7d65c66
b177367
3c4371f
1b8aef5
 
3c4371f
7e4a06b
31243f4
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
1b8aef5
 
36ed51a
c1fd3d2
3c4371f
1b8aef5
b066853
 
 
 
e80aab9
1b8aef5
b066853
 
7d65c66
3c4371f
b066853
 
 
 
 
 
 
 
 
 
 
 
bc0013e
b066853
 
 
 
 
 
 
31243f4
b066853
31243f4
3c4371f
31243f4
 
b066853
 
 
 
1b8aef5
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
1b8aef5
 
 
 
e80aab9
1b8aef5
 
 
 
 
 
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
b066853
 
e514fd7
 
 
 
 
e80aab9
 
b066853
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
1b8aef5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import dotenv
import importlib.resources
import json
import os
from typing import Any

import gradio as gr
import requests
import pandas as pd
from pathlib import Path
from langchain_core.messages import HumanMessage
from langgraph.graph import MessagesState
from langgraph.graph.graph import CompiledGraph

from agent_factory import AgentFactory

dotenv.load_dotenv()

HF_ACCESS_TOKEN = os.getenv("HF_ACCESS_TOKEN")
HF_USERNAME = os.getenv("HF_USERNAME")

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

DATA_PATH = Path(str(importlib.resources.files("data")))
QUESTIONS_FILE_PATH = DATA_PATH / "questions.jsonl"
AGENT_ANSWERS_FILE_PATH = DATA_PATH / "agent-answers.jsonl"


# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:

    __agent_factory: AgentFactory
    __agent: CompiledGraph

    def __init__(self):
        self.__agent_factory = AgentFactory()
        self.__agent = self.__agent_factory.get()
        print("BasicAgent initialized.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")

        initial_state = MessagesState(
            messages=[
                self.__agent_factory.system_prompt,
                HumanMessage(content=question)
            ]
        )

        final_state = self.__agent.invoke(input=initial_state)

        answer = final_state["messages"][-1].content

        print(f"Agent returning answer: {answer}")
        return answer


def retrieve_downloaded_questions() -> list[dict[str, Any]]:
    with open(QUESTIONS_FILE_PATH, mode="r") as f:
        return [json.loads(line) for line in f]

def download_questions_and_files() -> list[dict[str, Any]]:
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    files_base_url = f"{api_url}/files"

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return [{
                "error": "Fetched questions list is empty or invalid format."
            }]
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return [{
            "error": f"Error fetching questions: {e}"
        }]
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return [{
            "error": f"Error decoding server response for questions: {e}"
        }]
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return [{
            "error": f"An unexpected error occurred fetching questions: {e}"
        }]

    # Save input questions and related files into the data subdirectory
    try:
        with open(QUESTIONS_FILE_PATH, mode="w") as f:
            for cur_question in questions_data:
                json.dump(cur_question, f)
                f.write("\n")

                file_name = cur_question["file_name"]
                if len(file_name) > 0:
                    file_url = f"{files_base_url}/{cur_question["task_id"]}"
                    response = requests.get(file_url)
                    out_file_path = DATA_PATH / file_name
                    with open(out_file_path, 'wb') as file:
                        file.write(response.content)
    except requests.exceptions.RequestException as e:
        print(f"Error fetching question-related file: {e}")
        return [{
            "error": f"Error fetching question-related file: {e}"
        }]
    except Exception as e:
        print(f"An unexpected error occurred fetching question-related file: {e}")
        return [{
            "error": f"An unexpected error occurred fetching question-related file: {e}"
        }]

    return questions_data


def create_answers_file_if_not_exists() -> None:
    if not os.path.exists(AGENT_ANSWERS_FILE_PATH):
        with open(AGENT_ANSWERS_FILE_PATH, 'w'):
            pass


def get_answers_payload() -> list[dict[str, Any]]:
    with open(AGENT_ANSWERS_FILE_PATH, mode="r") as f:
        answers_payload = [json.loads(line) for line in f]
    return answers_payload


def get_task_ids_to_process() -> list[str]:
    with open(QUESTIONS_FILE_PATH, mode="r") as f:
        all_tasks = set([json.loads(line)["task_id"] for line in f])
    answers = get_answers_payload()
    answered_tasks = set([answer["task_id"] for answer in answers])
    tasks_to_answer = all_tasks - answered_tasks
    return list(tasks_to_answer)


def run_and_submit_all() -> tuple[str, pd.DataFrame | None]:
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    username= f"{HF_USERNAME}"
    print(f"User: {username}")

    api_url = DEFAULT_API_URL
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points
    # towards your codebase ( useful for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions and related files (they get saved into the data directory)
    if os.path.exists(QUESTIONS_FILE_PATH):
        questions_data = retrieve_downloaded_questions()
    else:
        questions_data = download_questions_and_files()

    # 3. Run your Agent and save agent's answers for later review
    create_answers_file_if_not_exists()
    task_ids_to_process = get_task_ids_to_process()
    results_log = []
    print(f"Running agent on {len(questions_data)} questions...")
    with open(AGENT_ANSWERS_FILE_PATH, mode="a") as f:
        for item in questions_data:
            task_id = item.get("task_id")
            if task_id not in task_ids_to_process:
                print(f"Skipping already answered question: {item}")
                continue
            question_text = json.dumps(item)
            if not task_id or question_text is None:
                print(f"Skipping item with missing task_id or question: {item}")
                continue
            try:
                answer_to_submit = agent(question_text)
                answer_payload = {"task_id": task_id, "submitted_answer": answer_to_submit}
                json.dump(answer_payload, f)
                f.write("\n")
                f.flush()
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer_to_submit})
            except Exception as e:
                 print(f"Error running agent on task {task_id}: {e}")
                 results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    answers_payload = get_answers_payload()
    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    if len(answers_payload) < len(questions_data):
        msg = "Still need to process all the questions. Rerun until all questions are answered."
        print(msg)
        return msg, pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    headers = {
        "Authorization": f"Bearer {HF_ACCESS_TOKEN}",
        "Content-Type": "application/json"
    }
    try:
        response = requests.post(
            submit_url,
            json=submission_data,
            headers=headers,
            timeout=60
        )
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Read the `README.md` file for configuration.
        2.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        """
    )

    # gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)