Update app.py
#1
by
simpsonjj
- opened
app.py
CHANGED
@@ -1,123 +1,123 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import torch
|
4 |
-
import pandas as pd
|
5 |
-
import time
|
6 |
-
from tqdm import tqdm
|
7 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
8 |
-
|
9 |
-
# Set up Streamlit app
|
10 |
-
st.title("Document Scoring App for Various Risk Factors Categories")
|
11 |
-
|
12 |
-
# Hugging Face model directories
|
13 |
-
model_directories = {
|
14 |
-
'finance': 'mgmtprofessor/finance_risk_factors',
|
15 |
-
'accounting': 'mgmtprofessor/accounting_risk_factors',
|
16 |
-
'technology': 'mgmtprofessor/technology_risk_factors',
|
17 |
-
'international': 'mgmtprofessor/international_risk_factors',
|
18 |
-
'operations': 'mgmtprofessor/operations_risk_factors',
|
19 |
-
'marketing': 'mgmtprofessor/marketing_risk_factors',
|
20 |
-
'management': 'mgmtprofessor/management_risk_factors',
|
21 |
-
'legal': 'mgmtprofessor/legal_risk_factors'
|
22 |
-
}
|
23 |
-
|
24 |
-
# Check if CUDA is available
|
25 |
-
use_cuda = torch.cuda.is_available()
|
26 |
-
|
27 |
-
# Function to load a model from Hugging Face
|
28 |
-
def load_model(category):
|
29 |
-
try:
|
30 |
-
# Load the model from Hugging Face based on the category
|
31 |
-
model_name = model_directories.get(category)
|
32 |
-
if model_name:
|
33 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
35 |
-
return model, tokenizer
|
36 |
-
else:
|
37 |
-
st.error(f"No Hugging Face model found for {category}")
|
38 |
-
return None, None
|
39 |
-
except Exception as e:
|
40 |
-
st.error(f"Failed to load model for {category}: {e}")
|
41 |
-
return None, None
|
42 |
-
|
43 |
-
# Function to score a document and return the prediction and probability for class '1'
|
44 |
-
def score_document(model, tokenizer, text_data):
|
45 |
-
if isinstance(text_data, str):
|
46 |
-
text_data = [text_data]
|
47 |
-
|
48 |
-
# Tokenize the input
|
49 |
-
inputs = tokenizer(text_data, return_tensors="pt", padding=True, truncation=True)
|
50 |
-
|
51 |
-
# Perform the prediction
|
52 |
-
with torch.no_grad():
|
53 |
-
outputs = model(**inputs)
|
54 |
-
|
55 |
-
# Get probabilities (softmax)
|
56 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
57 |
-
|
58 |
-
# Get the prediction (class with highest probability)
|
59 |
-
predictions = torch.argmax(probabilities, dim=1)
|
60 |
-
|
61 |
-
# Get the probability associated with class '1'
|
62 |
-
probability_class_1 = probabilities[:, 1].item()
|
63 |
-
|
64 |
-
return predictions.item(), probability_class_1
|
65 |
-
|
66 |
-
# Let the user upload a file
|
67 |
-
doc_file = st.file_uploader("Upload a document (.txt)", type=["txt"])
|
68 |
-
|
69 |
-
# Track the start time
|
70 |
-
start_time = time.time()
|
71 |
-
|
72 |
-
# Make predictions when a file is uploaded
|
73 |
-
if doc_file is not None:
|
74 |
-
# Read the content of the uploaded .txt file
|
75 |
-
text_data = doc_file.read().decode("utf-8")
|
76 |
-
|
77 |
-
# Initialize an empty DataFrame for results
|
78 |
-
result_df = pd.DataFrame(columns=["Category", "Prediction", "Probability"])
|
79 |
-
|
80 |
-
# Progress bar
|
81 |
-
progress_bar = st.progress(0)
|
82 |
-
total_categories = len(model_directories)
|
83 |
-
|
84 |
-
for i, category in enumerate(tqdm(model_directories.keys(), desc="Scoring documents")):
|
85 |
-
# Load the pre-trained model for the current category
|
86 |
-
model, tokenizer = load_model(category)
|
87 |
-
|
88 |
-
# Skip the category if model loading fails
|
89 |
-
if model is not None:
|
90 |
-
# Score the document
|
91 |
-
prediction, probability = score_document(model, tokenizer, text_data)
|
92 |
-
|
93 |
-
# Create a DataFrame for the current result
|
94 |
-
new_row = pd.DataFrame({
|
95 |
-
"Category": [category],
|
96 |
-
"Prediction": [prediction],
|
97 |
-
"Probability": [probability]
|
98 |
-
})
|
99 |
-
|
100 |
-
# Use pd.concat to append the new row to the DataFrame
|
101 |
-
result_df = pd.concat([result_df, new_row], ignore_index=True)
|
102 |
-
|
103 |
-
# Update the progress bar
|
104 |
-
progress_bar.progress((i + 1) / total_categories)
|
105 |
-
|
106 |
-
# Estimate remaining time
|
107 |
-
elapsed_time = time.time() - start_time
|
108 |
-
estimated_total_time = (elapsed_time / (i + 1)) * total_categories
|
109 |
-
st.write(f"Elapsed time: {elapsed_time:.2f}s, Estimated time remaining: {estimated_total_time - elapsed_time:.2f}s")
|
110 |
-
|
111 |
-
# Save results to CSV
|
112 |
-
csv = result_df.to_csv(index=False).encode('utf-8')
|
113 |
-
st.download_button(
|
114 |
-
label="Download results as CSV",
|
115 |
-
data=csv,
|
116 |
-
file_name="document_scoring_results.csv",
|
117 |
-
mime="text/csv",
|
118 |
-
)
|
119 |
-
|
120 |
-
# Display completion message
|
121 |
-
st.success("Document scoring complete!")
|
122 |
-
|
123 |
-
st.write("Note: Ensure the uploaded document is in .txt format containing text data.")
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
import time
|
6 |
+
from tqdm import tqdm
|
7 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
8 |
+
|
9 |
+
# Set up Streamlit app
|
10 |
+
st.title("Document Scoring App for Various Risk Factors Categories")
|
11 |
+
|
12 |
+
# Hugging Face model directories
|
13 |
+
model_directories = {
|
14 |
+
'finance': 'mgmtprofessor/finance_risk_factors',
|
15 |
+
'accounting': 'mgmtprofessor/accounting_risk_factors',
|
16 |
+
'technology': 'mgmtprofessor/technology_risk_factors',
|
17 |
+
'international': 'mgmtprofessor/international_risk_factors',
|
18 |
+
'operations': 'mgmtprofessor/operations_risk_factors',
|
19 |
+
'marketing': 'mgmtprofessor/marketing_risk_factors',
|
20 |
+
'management': 'mgmtprofessor/management_risk_factors',
|
21 |
+
'legal': 'mgmtprofessor/legal_risk_factors'
|
22 |
+
}
|
23 |
+
|
24 |
+
# Check if CUDA is available
|
25 |
+
use_cuda = torch.cuda.is_available()
|
26 |
+
|
27 |
+
# Function to load a model from Hugging Face
|
28 |
+
def load_model(category):
|
29 |
+
try:
|
30 |
+
# Load the model from Hugging Face based on the category
|
31 |
+
model_name = model_directories.get(category)
|
32 |
+
if model_name:
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
35 |
+
return model, tokenizer
|
36 |
+
else:
|
37 |
+
st.error(f"No Hugging Face model found for {category}")
|
38 |
+
return None, None
|
39 |
+
except Exception as e:
|
40 |
+
st.error(f"Failed to load model for {category}: {e}")
|
41 |
+
return None, None
|
42 |
+
|
43 |
+
# Function to score a document and return the prediction and probability for class '1'
|
44 |
+
def score_document(model, tokenizer, text_data):
|
45 |
+
if isinstance(text_data, str):
|
46 |
+
text_data = [text_data]
|
47 |
+
|
48 |
+
# Tokenize the input
|
49 |
+
inputs = tokenizer(text_data, return_tensors="pt", padding=True, truncation=True)
|
50 |
+
|
51 |
+
# Perform the prediction
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = model(**inputs)
|
54 |
+
|
55 |
+
# Get probabilities (softmax)
|
56 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
57 |
+
|
58 |
+
# Get the prediction (class with highest probability)
|
59 |
+
predictions = torch.argmax(probabilities, dim=1)
|
60 |
+
|
61 |
+
# Get the probability associated with class '1'
|
62 |
+
probability_class_1 = probabilities[:, 1].item()
|
63 |
+
|
64 |
+
return predictions.item(), probability_class_1
|
65 |
+
|
66 |
+
# Let the user upload a file
|
67 |
+
doc_file = st.file_uploader("Upload a document (.txt)", type=["txt"])
|
68 |
+
|
69 |
+
# Track the start time
|
70 |
+
start_time = time.time()
|
71 |
+
|
72 |
+
# Make predictions when a file is uploaded
|
73 |
+
if doc_file is not None:
|
74 |
+
# Read the content of the uploaded .txt file
|
75 |
+
text_data = doc_file.read().decode("utf-8")
|
76 |
+
|
77 |
+
# Initialize an empty DataFrame for results
|
78 |
+
result_df = pd.DataFrame(columns=["Category", "Prediction", "Probability"])
|
79 |
+
|
80 |
+
# Progress bar
|
81 |
+
progress_bar = st.progress(0)
|
82 |
+
total_categories = len(model_directories)
|
83 |
+
|
84 |
+
for i, category in enumerate(tqdm(model_directories.keys(), desc="Scoring documents")):
|
85 |
+
# Load the pre-trained model for the current category
|
86 |
+
model, tokenizer = load_model(category)
|
87 |
+
|
88 |
+
# Skip the category if model loading fails
|
89 |
+
if model is not None:
|
90 |
+
# Score the document
|
91 |
+
prediction, probability = score_document(model, tokenizer, text_data)
|
92 |
+
|
93 |
+
# Create a DataFrame for the current result
|
94 |
+
new_row = pd.DataFrame({
|
95 |
+
"Category": [category],
|
96 |
+
"Prediction": [prediction],
|
97 |
+
"Probability": [probability]
|
98 |
+
})
|
99 |
+
|
100 |
+
# Use pd.concat to append the new row to the DataFrame
|
101 |
+
result_df = pd.concat([result_df, new_row], ignore_index=True)
|
102 |
+
|
103 |
+
# Update the progress bar
|
104 |
+
progress_bar.progress((i + 1) / total_categories)
|
105 |
+
|
106 |
+
# Estimate remaining time
|
107 |
+
elapsed_time = time.time() - start_time
|
108 |
+
estimated_total_time = (elapsed_time / (i + 1)) * total_categories
|
109 |
+
st.write(f"Elapsed time: {elapsed_time:.2f}s, Estimated time remaining: {estimated_total_time - elapsed_time:.2f}s")
|
110 |
+
|
111 |
+
# Save results to CSV
|
112 |
+
csv = result_df.to_csv(index=False).encode('utf-8')
|
113 |
+
st.download_button(
|
114 |
+
label="Download results as CSV",
|
115 |
+
data=csv,
|
116 |
+
file_name="document_scoring_results.csv",
|
117 |
+
mime="text/csv",
|
118 |
+
)
|
119 |
+
|
120 |
+
# Display completion message
|
121 |
+
st.success("Document scoring complete!")
|
122 |
+
|
123 |
+
st.write("Note: Ensure the uploaded document is in .txt format containing text data. The current limit is 512 tokens and will be increased later.")
|