File size: 6,170 Bytes
bea4577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abe079
 
 
bea4577
 
2abe079
bea4577
 
2abe079
 
bea4577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abe079
bea4577
2abe079
 
bea4577
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch

from datasets import load_dataset
import transformers
from diffusers import StableDiffusionPipeline

import gradio as gr

from random import randrange
import os

MY_SECRET_TOKEN = os.environ.get('stable-diffusion')

data = load_dataset("mfumanelli/movies-small")
data = data['train'].to_pandas()

model_id = 'CompVis/stable-diffusion-v1-4'
device = torch.device('cpu' if not torch.cuda.is_available() else 'cuda')

pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=MY_SECRET_TOKEN, revision='fp16')
pipe = pipe.to(device)


def infer(prompt, samples, steps, scale):
    generator = torch.Generator(device=device)

    if device.type == 'cuda':
        with torch.autocast(device.type):
            images_list = pipe(
                [prompt] * samples,
                num_inference_steps=steps,
                guidance_scale=scale,
                generator=generator,
            )
    else:
        images_list = pipe(
            [prompt] * samples,
            num_inference_steps=steps,
            guidance_scale=scale,
            generator=generator,
        )

    return images_list


def generate_movie():
    seed = randrange(data.shape[0])
    plot = data.iloc[seed]["plot_synopsis_sum"]
    image = infer(plot, 1, 50, 7.5)

    return image["sample"][0], seed


def movie_title(seed):
    return data.iloc[int(seed)]["title"]


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #iamge {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #iamge>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >

                <svg style="color: red" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 256", height="0.85em" width="0.85em">
                <rect width="18em" height="18em" fill="none"></rect>
                <path d="M128,216S28,160,28,92A52,52,0,0,1,128,72h0A52,52,0,0,1,228,92C228,160,128,216,128,216Z" fill="#d63e25" stroke="#d63e25" stroke-linecap="round"
                stroke-linejoin="round" stroke-width="12"></path></svg>
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  Stable Diffusion Loves Cinema
                </h1>
              </div>
              <p style="margin-bottom: 20px; font-size: 94%">
                Stable Diffusion is a state-of-the-art text-to-image model that generates images from text, 
                in this demo it is used to generate movie scenes from their storyline. <br></p>
                <hr style="height:2px;border-width:0;color:gray;background-color:gray">
                <br>
              <p align="left" style="margin-bottom: 10px; font-size: 94%">
                <b>Instructions</b>: press the "Generate a movie scene!" button to generate an image and try to see if you can guess the movie.
                You can see if you guessed right by pressing the "Tell me the title" button.

              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                b1 = gr.Button("Generate a movie scene!").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )
                b2 = gr.Button("Tell me the title").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )
            text = gr.Textbox(label="Title:")
            image = gr.Image(
                label="Generated images", show_label=False, elem_id="image"
            ).style(height="auto")

            seed = gr.Number(visible=False)

            b1.click(generate_movie, inputs=None, outputs=[image, seed])
            b2.click(movie_title, inputs=seed, outputs=text)

demo.launch()