Spaces:
Runtime error
Runtime error
mfumanelli
commited on
Commit
β’
bea4577
1
Parent(s):
d3634e7
Add app.py
Browse files- app.py +189 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
import transformers
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from random import randrange
|
10 |
+
import os
|
11 |
+
|
12 |
+
MY_SECRET_TOKEN = os.environ.get('stable-diffusion')
|
13 |
+
|
14 |
+
data = load_dataset("mfumanelli/movies-small")
|
15 |
+
data = data['train'].to_pandas()
|
16 |
+
|
17 |
+
model_id = 'CompVis/stable-diffusion-v1-4'
|
18 |
+
device = torch.device('cpu' if not torch.cuda.is_available() else 'cuda')
|
19 |
+
|
20 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=MY_SECRET_TOKEN, revision='fp16')
|
21 |
+
pipe = pipe.to(device)
|
22 |
+
|
23 |
+
|
24 |
+
def infer(prompt, samples, steps, scale):
|
25 |
+
generator = torch.Generator(device=device)
|
26 |
+
|
27 |
+
if device.type == 'cuda':
|
28 |
+
with torch.autocast(device.type):
|
29 |
+
images_list = pipe(
|
30 |
+
[prompt] * samples,
|
31 |
+
num_inference_steps=steps,
|
32 |
+
guidance_scale=scale,
|
33 |
+
generator=generator,
|
34 |
+
)
|
35 |
+
else:
|
36 |
+
images_list = pipe(
|
37 |
+
[prompt] * samples,
|
38 |
+
num_inference_steps=steps,
|
39 |
+
guidance_scale=scale,
|
40 |
+
generator=generator,
|
41 |
+
)
|
42 |
+
|
43 |
+
return images_list
|
44 |
+
|
45 |
+
|
46 |
+
def generate_movie(state):
|
47 |
+
state["title"] = None
|
48 |
+
random_number = randrange(data.shape[0])
|
49 |
+
plot = data.iloc[random_number]["plot_synopsis_sum"]
|
50 |
+
image = infer(plot, 1, 50, 7.5)
|
51 |
+
state["number"] = random_number
|
52 |
+
state["title"] = data.iloc[int(random_number)]["title"]
|
53 |
+
|
54 |
+
return image["sample"][0], state
|
55 |
+
|
56 |
+
|
57 |
+
def movie_title(state):
|
58 |
+
return state["title"]
|
59 |
+
|
60 |
+
|
61 |
+
css = """
|
62 |
+
.gradio-container {
|
63 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
64 |
+
}
|
65 |
+
.gr-button {
|
66 |
+
color: white;
|
67 |
+
border-color: black;
|
68 |
+
background: black;
|
69 |
+
}
|
70 |
+
input[type='range'] {
|
71 |
+
accent-color: black;
|
72 |
+
}
|
73 |
+
.dark input[type='range'] {
|
74 |
+
accent-color: #dfdfdf;
|
75 |
+
}
|
76 |
+
.container {
|
77 |
+
max-width: 730px;
|
78 |
+
margin: auto;
|
79 |
+
padding-top: 1.5rem;
|
80 |
+
}
|
81 |
+
#iamge {
|
82 |
+
min-height: 22rem;
|
83 |
+
margin-bottom: 15px;
|
84 |
+
margin-left: auto;
|
85 |
+
margin-right: auto;
|
86 |
+
border-bottom-right-radius: .5rem !important;
|
87 |
+
border-bottom-left-radius: .5rem !important;
|
88 |
+
}
|
89 |
+
#iamge>div>.h-full {
|
90 |
+
min-height: 20rem;
|
91 |
+
}
|
92 |
+
.details:hover {
|
93 |
+
text-decoration: underline;
|
94 |
+
}
|
95 |
+
.gr-button {
|
96 |
+
white-space: nowrap;
|
97 |
+
}
|
98 |
+
.gr-button:focus {
|
99 |
+
border-color: rgb(147 197 253 / var(--tw-border-opacity));
|
100 |
+
outline: none;
|
101 |
+
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
|
102 |
+
--tw-border-opacity: 1;
|
103 |
+
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
|
104 |
+
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
|
105 |
+
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
|
106 |
+
--tw-ring-opacity: .5;
|
107 |
+
}
|
108 |
+
.footer {
|
109 |
+
margin-bottom: 45px;
|
110 |
+
margin-top: 35px;
|
111 |
+
text-align: center;
|
112 |
+
border-bottom: 1px solid #e5e5e5;
|
113 |
+
}
|
114 |
+
.footer>p {
|
115 |
+
font-size: .8rem;
|
116 |
+
display: inline-block;
|
117 |
+
padding: 0 10px;
|
118 |
+
transform: translateY(10px);
|
119 |
+
background: white;
|
120 |
+
}
|
121 |
+
.dark .footer {
|
122 |
+
border-color: #303030;
|
123 |
+
}
|
124 |
+
.dark .footer>p {
|
125 |
+
background: #0b0f19;
|
126 |
+
}
|
127 |
+
.acknowledgments h4{
|
128 |
+
margin: 1.25em 0 .25em 0;
|
129 |
+
font-weight: bold;
|
130 |
+
font-size: 115%;
|
131 |
+
}
|
132 |
+
"""
|
133 |
+
|
134 |
+
with gr.Blocks(css=css) as demo:
|
135 |
+
gr.HTML(
|
136 |
+
"""
|
137 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
138 |
+
<div
|
139 |
+
style="
|
140 |
+
display: inline-flex;
|
141 |
+
align-items: center;
|
142 |
+
gap: 0.8rem;
|
143 |
+
font-size: 1.75rem;
|
144 |
+
"
|
145 |
+
>
|
146 |
+
|
147 |
+
<svg style="color: red" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 256", height="0.85em" width="0.85em">
|
148 |
+
<rect width="18em" height="18em" fill="none"></rect>
|
149 |
+
<path d="M128,216S28,160,28,92A52,52,0,0,1,128,72h0A52,52,0,0,1,228,92C228,160,128,216,128,216Z" fill="#d63e25" stroke="#d63e25" stroke-linecap="round"
|
150 |
+
stroke-linejoin="round" stroke-width="12"></path></svg>
|
151 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
152 |
+
Stable Diffusion Loves Cinema
|
153 |
+
</h1>
|
154 |
+
</div>
|
155 |
+
<p style="margin-bottom: 20px; font-size: 94%">
|
156 |
+
Stable Diffusion is a state-of-the-art text-to-image model that generates images from text,
|
157 |
+
in this demo it is used to generate movie scenes from their storyline. <br></p>
|
158 |
+
<hr style="height:2px;border-width:0;color:gray;background-color:gray">
|
159 |
+
<br>
|
160 |
+
<p align="left" style="margin-bottom: 10px; font-size: 94%">
|
161 |
+
<b>Instructions</b>: press the "Generate a movie scene!" button to generate an image and try to see if you can guess the movie.
|
162 |
+
You can see if you guessed right by pressing the "Tell me the title" button.
|
163 |
+
|
164 |
+
</p>
|
165 |
+
</div>
|
166 |
+
"""
|
167 |
+
)
|
168 |
+
with gr.Group():
|
169 |
+
with gr.Box():
|
170 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
171 |
+
b1 = gr.Button("Generate a movie scene!").style(
|
172 |
+
margin=False,
|
173 |
+
rounded=(False, True, True, False),
|
174 |
+
)
|
175 |
+
b2 = gr.Button("Tell me the title").style(
|
176 |
+
margin=False,
|
177 |
+
rounded=(False, True, True, False),
|
178 |
+
)
|
179 |
+
text = gr.Textbox(label="Title:")
|
180 |
+
image = gr.Image(
|
181 |
+
label="Generated images", show_label=False, elem_id="image"
|
182 |
+
).style(height="auto")
|
183 |
+
|
184 |
+
state = gr.State({"number": None, "title": None})
|
185 |
+
|
186 |
+
b1.click(generate_movie, inputs=state, outputs=[image, state])
|
187 |
+
b2.click(movie_title, inputs=state, outputs=text)
|
188 |
+
|
189 |
+
demo.launch()
|
requirements.txt
ADDED
File without changes
|