File size: 11,797 Bytes
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
from icecream import ic
import random
import numpy as np
from kinematics import get_init_xyz
import torch.nn as nn 
from util_module import ComputeAllAtomCoords
from util import *
from inpainting_util import MSAFeaturize_fixbb, TemplFeaturizeFixbb, lddt_unbin
from kinematics import xyz_to_t2d


def mask_inputs(seq, msa_masked, msa_full, xyz_t, t1d, input_seq_mask=None, 
        input_str_mask=None, input_t1dconf_mask=None, diffuser=None, t=None, 
        MODEL_PARAM=None, hotspots=None, dssp=None, v2_mode=False):


    """
    JG - adapted slightly for the inference case

    Parameters:
        seq (torch.tensor, required): (I,L) integer sequence

        msa_masked (torch.tensor, required): (I,N_short,L,48)

        msa_full  (torch,.tensor, required): (I,N_long,L,25)

        xyz_t (torch,tensor): (T,L,27,3) template crds BEFORE they go into get_init_xyz

        t1d (torch.tensor, required): (I,L,22) this is the t1d before tacking on the chi angles

        str_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where structure is masked at False positions

        seq_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where seq is masked at False positions
        t1d_24: is there an extra dimension to input structure confidence?

        diffuser: diffuser class

        t: time step

    NOTE: in the MSA, the order is 20aa, 1x unknown, 1x mask token. We set the masked region to 22 (masked).
        For the t1d, this has 20aa, 1x unkown, and 1x template conf. Here, we set the masked region to 21 (unknown).
        This, we think, makes sense, as the template in normal RF training does not perfectly correspond to the MSA.
    """
    assert diffuser != None, 'please choose a diffuser'

    ###########
    seq = seq[0,:1]
    msa_masked = msa_masked[0,:1]
    msa_full = msa_full[0,:1]
    t1d = t1d[0]
    xyz_t = xyz_t[0]

    seq_mask = input_seq_mask[0]



    ######################
    ###sequence diffusion###
    ######################
    """
    #muate some percentage of sequence to have model be able to mutate residues later in denoising trajectory
    if True:
        masked_values=input_seq_mask[0].nonzero()[:,0]
        print(masked_values)
        mut_p=math.floor(masked_values.shape[0]*.05)
        print(mut_p)
        mutate_indices = torch.randperm(len(masked_values))[:mut_p]
        print(mutate_indices)
        for i in range(len(mutate_indices)):
            seq[0,masked_values[mutate_indices[i]]]  = torch.randint(0, 21, (1,))
    """
    str_mask     = input_str_mask[0]
    
    x_0          = torch.nn.functional.one_hot(seq[0,...],num_classes=22).float()*2-1
    
    #ic(seq_mask)

    seq_diffused = diffuser.q_sample(x_0,torch.tensor([t-1]),mask=seq_mask)
    #seq_diffused = torch.clamp(seq_diffused, min=-1, max=1)

    seq_tmp=torch.argmax(seq_diffused,axis=-1).to(device=seq.device)
    seq=seq_tmp.repeat(seq.shape[0], 1)
    
    ###################
    ###msa diffusion###
    ###################

    ### msa_masked ###
    #ic(msa_masked.shape)
    B,N,L,_=msa_masked.shape

    msa_masked[:,0,:,:22] = seq_diffused
    
    x_0_msa = msa_masked[0,1:,:,:22].float()*2-1
    msa_seq_mask = seq_mask.unsqueeze(0).repeat(N-1, 1)
    msa_diffused = diffuser.q_sample(x_0_msa,torch.tensor([t-1]),mask=msa_seq_mask)
    #msa_diffused = torch.clamp(msa_diffused, min=-1, max=1)
    msa_masked[:,1:,:,:22] = torch.clone(msa_diffused)
    
    # index 44/45 is insertion/deletion
    # index 43 is the masked token NOTE check this
    # index 42 is the unknown token 
    msa_masked[:,0,:,22:44] = seq_diffused
    msa_masked[:,1:,:,22:44] = msa_diffused

    # insertion/deletion stuff 
    msa_masked[:,0,~seq_mask,44:46] = 0

    ### msa_full ### 
    ################
    #msa_full[:,0,:,:22] = seq_diffused
    #make msa_full same size as msa_masked
    msa_full = msa_full[:,:msa_masked.shape[1],:,:]
    msa_full[:,0,:,:22] = seq_diffused
    msa_full[:,1:,:,:22] = msa_diffused

    ### t1d ###
    ########### 
    # NOTE: adjusting t1d last dim (confidence) from sequence mask
    t1d = torch.cat((t1d, torch.zeros((t1d.shape[0],t1d.shape[1],2)).float()), -1).to(seq.device)
    t1d[:,:,:21] = seq_diffused[...,:21]

    #t1d[:,:,21] *= input_t1dconf_mask
    #set diffused conf to 0 and everything else to 1
    t1d[:,~seq_mask,21] = 0.0
    t1d[:,seq_mask,21] = 1.0
    
    t1d[:1,:,22] = 1-t/diffuser.num_timesteps

    t1d[:,~str_mask,23] = 0.0
    t1d[:,str_mask,23] = 1.0
    
    # EXPAND t1d to match model params
    if MODEL_PARAM['d_t1d'] == 29:
        ## added t1d features ##
        # 24 -- dssp helix
        # 25 -- dssp sheet
        # 26 -- dssp loop
        # 27 -- dssp mask
        # 28 -- hotspot resi on target
        t1d = torch.cat((t1d,torch.zeros(t1d.shape[0],t1d.shape[1],5)),dim=-1)
        t1d[:,:,24:28] = dssp
        t1d[:,:,28] = hotspots
        t1d[:,str_mask,24:27] = 0.0
        t1d[:,str_mask,27] = 1.0

    xyz_t = get_init_xyz(xyz_t[None])
    xyz_t = xyz_t[0]

    xyz_t[:,~seq_mask,3:,:] = float('nan')

    # Structure masking
    xyz_t[:,~str_mask,:,:] = float('nan')

    if not v2_mode:
        xyz_t = get_init_xyz(xyz_t[None])
        xyz_t = xyz_t[0]
        assert torch.sum(torch.isnan(xyz_t[:,:,:3,:]))==0

    return seq, msa_masked, msa_full, xyz_t, t1d, seq_diffused


conversion = 'ARNDCQEGHILKMFPSTWYVX-'


def take_step(model, msa, msa_extra, seq, t1d, t2d, idx_pdb, N_cycle, xyz_prev, alpha, xyz_t, 
        alpha_t, seq_diffused, msa_prev, pair_prev, state_prev):
    """ 
    Single step in the diffusion process
    """
    compute_allatom_coords=ComputeAllAtomCoords().to(seq.device) 
    #ic(msa.shape)
    B, _, N, L, _ = msa.shape
    with torch.no_grad():
        with torch.cuda.amp.autocast(True):
            for i_cycle in range(N_cycle-1):
                msa_prev, pair_prev, xyz_prev, state_prev, alpha = model(msa[:,0],
                                                                   msa_extra[:,0],
                                                                   seq[:,0], xyz_prev,
                                                                   idx_pdb,
                                                                   seq1hot=seq_diffused,
                                                                   t1d=t1d, t2d=t2d,
                                                                   xyz_t=xyz_t, alpha_t=alpha_t,
                                                                   msa_prev=msa_prev,
                                                                   pair_prev=pair_prev,
                                                                   state_prev=state_prev,
                                                                   return_raw=True) 
                
            
            logit_s, logit_aa_s, logits_exp, xyz_prev, pred_lddt, msa_prev, pair_prev, state_prev, alpha = model(msa[:,0], 
                                                            msa_extra[:,0],
                                                            seq[:,0], xyz_prev,
                                                            idx_pdb,
                                                            seq1hot=seq_diffused,
                                                            t1d=t1d, t2d=t2d, xyz_t=xyz_t, alpha_t=alpha_t,
                                                            msa_prev=msa_prev,
                                                            pair_prev=pair_prev,
                                                            state_prev=state_prev,
                                                            return_infer=True)
        logit_aa_s_msa = torch.clone(logit_aa_s)
        logit_aa_s = logit_aa_s.reshape(B,-1,N,L)[:,:,0,:]
        logit_aa_s = logit_aa_s.reshape(B,-1,L)
        seq_out = torch.argmax(logit_aa_s, dim=-2)

        pred_lddt_unbinned = lddt_unbin(pred_lddt)
        _, xyz_prev = compute_allatom_coords(seq_out, xyz_prev, alpha)
    
    if N>1:
        return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, logit_aa_s_msa, alpha, msa_prev, pair_prev, state_prev  
    else:
        return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, alpha, msa_prev, pair_prev, state_prev
            
            
def take_step_nostate(model, msa, msa_extra, seq, t1d, t2d, idx_pdb, N_cycle, xyz_prev, alpha, xyz_t,
        alpha_t, seq_diffused, msa_prev, pair_prev, state_prev):
    """ 
    Single step in the diffusion process, with no conditioning on state
    """
    compute_allatom_coords=ComputeAllAtomCoords().to(seq.device)
    msa_prev = None
    pair_prev = None
    state_prev = None
    
    B, _, N, L, _ = msa.shape
    with torch.no_grad():
        with torch.cuda.amp.autocast(True):
            for i_cycle in range(N_cycle-1):
                msa_prev, pair_prev, xyz_prev, state_prev, alpha = model(msa[:,0],
                                                                   msa_extra[:,0],
                                                                   seq[:,0], xyz_prev,
                                                                   idx_pdb,
                                                                   seq1hot=seq_diffused,
                                                                   t1d=t1d, t2d=t2d,
                                                                   xyz_t=xyz_t, alpha_t=alpha_t,
                                                                   msa_prev=msa_prev,
                                                                   pair_prev=pair_prev,
                                                                   state_prev=state_prev,
                                                                   return_raw=True)


            logit_s, logit_aa_s, logits_exp, xyz_prev, pred_lddt, msa_prev, pair_prev, state_prev, alpha = model(msa[:,0],
                                                            msa_extra[:,0],
                                                            seq[:,0], xyz_prev,
                                                            idx_pdb,
                                                            seq1hot=seq_diffused,
                                                            t1d=t1d, t2d=t2d, xyz_t=xyz_t, alpha_t=alpha_t,
                                                            msa_prev=msa_prev,
                                                            pair_prev=pair_prev,
                                                            state_prev=state_prev,
                                                            return_infer=True)

        logit_aa_s_msa = torch.clone(logit_aa_s)
        logit_aa_s = logit_aa_s.reshape(B,-1,N,L)[:,:,0,:]
        logit_aa_s = logit_aa_s.reshape(B,-1,L)
        seq_out = torch.argmax(logit_aa_s, dim=-2)

        pred_lddt_unbinned = lddt_unbin(pred_lddt)
        _, xyz_prev = compute_allatom_coords(seq_out, xyz_prev, alpha)

    if N>1:
        return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, logit_aa_s_msa, alpha, msa_prev, pair_prev, state_prev
    else:
        return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, alpha, msa_prev, pair_prev, state_prev


def get_alphas(t1d, xyz_t, B, L, ti_dev, ti_flip, ang_ref):
    # get torsion angles from templates
    seq_tmp = t1d[...,:21].argmax(dim=-1).reshape(-1,L)
    alpha, _, alpha_mask, _ = get_torsions(xyz_t.reshape(-1,L,27,3), seq_tmp, ti_dev, ti_flip, ang_ref)
    alpha_mask = torch.logical_and(alpha_mask, ~torch.isnan(alpha[...,0]))
    alpha[torch.isnan(alpha)] = 0.0
    alpha = alpha.reshape(B,-1,L,10,2)
    alpha_mask = alpha_mask.reshape(B,-1,L,10,1)
    alpha_t = torch.cat((alpha, alpha_mask), dim=-1).reshape(B, -1, L, 30)
    return alpha, alpha_t