File size: 18,212 Bytes
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os,sys

# install environment goods
#os.system("pip -q install dgl -f https://data.dgl.ai/wheels/cu113/repo.html")
os.system('pip install dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html')
#os.system('pip install gradio')
os.environ["DGLBACKEND"] = "pytorch"
#os.system(f'pip install -r ./PROTEIN_GENERATOR/requirements.txt')
print('Modules installed')

os.environ["DGLBACKEND"] = "pytorch"

if not os.path.exists('./SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'):
    print('Downloading model weights 1')
    os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt')
    print('Successfully Downloaded')

if not os.path.exists('./SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'):
    print('Downloading model weights 2')
    os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt')
    print('Successfully Downloaded')

import numpy as np
import gradio as gr
import py3Dmol
from io import StringIO
import json
import secrets
import copy
import matplotlib.pyplot as plt
from utils.sampler import HuggingFace_sampler

plt.rcParams.update({'font.size': 13})

with open('./tmp/args.json','r') as f:
    args = json.load(f)

# manually set checkpoint to load
args['checkpoint'] = None
args['dump_trb'] = False
args['dump_args'] = True
args['save_best_plddt'] = True
args['T'] = 25
args['strand_bias'] = 0.0
args['loop_bias'] = 0.0
args['helix_bias'] = 0.0



def protein_diffusion_model(sequence, seq_len, helix_bias, strand_bias, loop_bias, 
                    secondary_structure, aa_bias, aa_bias_potential, target_charge, target_ph, charge_potential, 
                    num_steps, noise, hydrophobic_target_score, hydrophobic_potential):
    
    dssp_checkpoint = './SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'
    og_checkpoint = './SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'

    model_args = copy.deepcopy(args)

    # make sampler
    S = HuggingFace_sampler(args=model_args)

    # get random prefix 
    S.out_prefix = './tmp/'+secrets.token_hex(nbytes=10).upper()

    # set args
    S.args['checkpoint'] = None
    S.args['dump_trb'] = False
    S.args['dump_args'] = True
    S.args['save_best_plddt'] = True
    S.args['T'] = 20
    S.args['strand_bias'] = 0.0
    S.args['loop_bias'] = 0.0
    S.args['helix_bias'] = 0.0
    S.args['potentials'] = None
    S.args['potential_scale'] = None
    S.args['aa_composition'] = None


    # get sequence if entered and make sure all chars are valid
    alt_aa_dict = {'B':['D','N'],'J':['I','L'],'U':['C'],'Z':['E','Q'],'O':['K']}
    if sequence not in ['',None]:
        aa_seq = []
        for aa in sequence.upper():
            if aa in alt_aa_dict.keys():
                aa_seq.append(np.random.choice(alt_aa_dict[aa]))
            else:
                aa_seq.append(aa)

        S.args['sequence'] = aa_seq
    else:
      S.args['contigs'] = [f'{seq_len}']
    
    if secondary_structure in ['',None]:
        secondary_structure = None
    else:
        secondary_structure = ''.join(['E' if x == 'S' else x for x in secondary_structure])
        if len(sequence) < len(secondary_structure):
            secondary_structure = secondary_structure[:len(sequence)]
        elif len(sequence) == len(secondary_structure):
            pass
        else:
            dseq = len(sequence) - len(secondary_structure)
            secondary_structure += secondary_structure[-1]*dseq
    

    # potentials
    potential_list = []
    potential_bias_list = []

    if aa_bias not in ['',None]:
        potential_list.append('aa_bias')
        S.args['aa_composition'] = aa_bias
        if aa_bias_potential in ['',None]:
            aa_bias_potential = 3
        potential_bias_list.append(str(aa_bias_potential))

    if target_charge not in ['',None]:
        potential_list.append('charge')
        if charge_potential in ['',None]:
            charge_potential = 1
        potential_bias_list.append(str(charge_potential))
        S.args['target_charge'] = int(target_charge)
        if target_ph in ['',None]:
            target_ph = 7.4
        S.args['target_pH'] = float(target_ph)
    
    
    if hydrophobic_target_score not in ['',None]:
        potential_list.append('hydrophobic')
        S.args['hydrophobic_score'] = float(hydrophobic_target_score)
        if hydrophobic_potential in ['',None]:
            hydrophobic_potential = 3
        potential_bias_list.append(str(hydrophobic_potential))
    

    if len(potential_list) > 0:
        S.args['potentials'] = ','.join(potential_list)
        S.args['potential_scale'] = ','.join(potential_bias_list)


    # normalise secondary_structure bias from range 0-0.3
    S.args['secondary_structure'] = secondary_structure
    S.args['helix_bias'] = helix_bias
    S.args['strand_bias'] = strand_bias
    S.args['loop_bias'] = loop_bias
    
    # set T
    if num_steps in ['',None]:
        S.args['T'] = 20
    else:
        S.args['T'] = int(num_steps)

    # noise
    if 'normal' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [0]
        S.args['sample_distribution_gmm_variances'] = [1]
    elif 'gmm2' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [-1,1]
        S.args['sample_distribution_gmm_variances'] = [1,1]
    elif 'gmm3' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [-1,0,1]
        S.args['sample_distribution_gmm_variances'] = [1,1,1]



    if secondary_structure not in ['',None] or helix_bias+strand_bias+loop_bias > 0:
        S.args['checkpoint'] = dssp_checkpoint
        S.args['d_t1d'] = 29
        print('using dssp checkpoint')
    else:
        S.args['checkpoint'] = og_checkpoint
        S.args['d_t1d'] = 24
        print('using og checkpoint')
    

    for k,v in S.args.items():
        print(f"{k} --> {v}")
    
    # init S
    S.model_init()
    S.diffuser_init()
    S.setup()

    # sampling loop
    plddt_data = []
    for j in range(S.max_t):
        output_seq, output_pdb, plddt = S.take_step_get_outputs(j)
        plddt_data.append(plddt)
        yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)
    
    output_seq, output_pdb, plddt = S.get_outputs()

    yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)

def get_plddt_plot(plddt_data, max_t):
    x = [i+1 for i in range(len(plddt_data))]
    fig, ax = plt.subplots(figsize=(15,6))
    ax.plot(x,plddt_data,color='#661dbf', linewidth=3,marker='o')
    ax.set_xticks([i+1 for i in range(max_t)])
    ax.set_yticks([(i+1)/10 for i in range(10)])
    ax.set_ylim([0,1])
    ax.set_ylabel('model confidence (plddt)')
    ax.set_xlabel('diffusion steps (t)')
    return fig

def display_pdb(path_to_pdb):
    '''
        #function to display pdb in py3dmol
    '''
    pdb = open(path_to_pdb, "r").read()
    
    view = py3Dmol.view(width=500, height=500)
    view.addModel(pdb, "pdb")
    view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) 
    view.zoomTo()
    output = view._make_html().replace("'", '"')
    print(view._make_html())
    x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
    
    return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                            allow-scripts allow-same-origin allow-popups
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""

'''

    return f"""<iframe  style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera; 
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
                            allow-scripts allow-same-origin allow-popups 
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
'''

def toggle_seq_input(choice):
    if choice == "protein length":
        return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
    elif choice == "custom sequence":
        return gr.update(visible=False, value=None), gr.update(visible=True, value=None)

def toggle_secondary_structure(choice):
    if choice == "sliders":
        return gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=False, value=None)
    elif choice == "explicit":
        return gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=True, value=None)

# Define the Gradio interface
with gr.Blocks(theme='ParityError/Interstellar') as demo:
    
    gr.Markdown(f"""# Protein Generation via Diffusion in Sequence Space""")

    with gr.Row():
        with gr.Column(min_width=500):
            gr.Markdown(f"""
                    ## How does it work?\n
                    Protein sequence and structure co-generation is a long outstanding problem in the field of protein design. By implementing [ddpm](https://arxiv.org/abs/2006.11239) style diffusion over protein seqeuence space we generate protein sequence and structure pairs. Starting with [RoseTTAFold](https://www.science.org/doi/10.1126/science.abj8754), a protein structure prediction network, we finetuned it to predict sequence and structure given a partially noised sequence. By applying losses to both the predicted sequence and structure the model is forced to generate meaningful pairs. Diffusing in sequence space makes it easy to implement potentials to guide the diffusive process toward particular amino acid composition, net charge, and more! Furthermore, you can sample proteins from a family of sequences or even train a small sequence to function classifier to guide generation toward desired sequences.
                    ![fig1](http://files.ipd.uw.edu/pub/sequence_diffusion/figs/diffusion_landscape.png)
                    
                    ## How to use it?\n
                    A user can either design a custom input sequence to diffuse from or specify a length below. To scaffold a sequence use the following format where X represent residues to diffuse: XXXXXXXXSCIENCESCIENCEXXXXXXXXXXXXXXXXXXX. You can even design a protein with your name XXXXXXXXXXXXNAMEHEREXXXXXXXXXXXXX!
                    
                    ### Acknowledgements\n
                    Thank you to Simon Dürr and the Hugging Face team for setting us up with a community GPU grant!
                    """)
            
        gr.Markdown("""
        ## Model in Action
        ![gif1](http://files.ipd.uw.edu/pub/sequence_diffusion/figs/seqdiff_anim_720p.gif)
        """)

    with gr.Row().style(equal_height=False):
        with gr.Column():
            gr.Markdown("""## INPUTS""")
            gr.Markdown("""#### Start Sequence
                        Specify the protein length for complete unconditional generation, or scaffold a motif (or your name) using the custom sequence input""")
            seq_opt = gr.Radio(["protein length","custom sequence"], label="How would you like to specify the starting sequence?", value='protein length')

            sequence = gr.Textbox(label="custom sequence", lines=1, placeholder='AMINO ACIDS: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y\n  MASK TOKEN: X', visible=False)
            seq_len = gr.Slider(minimum=5.0, maximum=250.0, label="protein length", value=100, visible=True)
            
            seq_opt.change(fn=toggle_seq_input,
                                    inputs=[seq_opt],
                                    outputs=[seq_len, sequence],
                                    queue=False)

            gr.Markdown("""### Optional Parameters""")
            with gr.Accordion(label='Secondary Structure',open=True):
                gr.Markdown("""Try changing the sliders or inputing explicit secondary structure conditioning for each residue""")
                sec_str_opt = gr.Radio(["sliders","explicit"], label="How would you like to specify secondary structure?", value='sliders')

                secondary_structure = gr.Textbox(label="secondary structure", lines=1, placeholder='HELIX = H  STRAND = S  LOOP = L  MASK = X(must be the same length as input sequence)', visible=False)
                
                with gr.Column():
                    helix_bias = gr.Slider(minimum=0.0, maximum=0.05, label="helix bias", visible=True)
                    strand_bias = gr.Slider(minimum=0.0, maximum=0.05, label="strand bias", visible=True)
                    loop_bias = gr.Slider(minimum=0.0, maximum=0.20, label="loop bias", visible=True)
            
                sec_str_opt.change(fn=toggle_secondary_structure,
                                        inputs=[sec_str_opt],
                                        outputs=[helix_bias,strand_bias,loop_bias,secondary_structure],
                                        queue=False)
                
            with gr.Accordion(label='Amino Acid Compositional Bias',open=False):
                gr.Markdown("""Bias sequence composition for particular amino acids by specifying the one letter code followed by the fraction to bias. This can be input as a list for example: W0.2,E0.1""")
                with gr.Row():
                    aa_bias = gr.Textbox(label="aa bias", lines=1, placeholder='specify one letter AA and fraction to bias, for example W0.1 or M0.1,K0.1' )
                    aa_bias_potential = gr.Textbox(label="aa bias scale", lines=1, placeholder='AA Bias potential scale (recomended range 1.0-5.0)')

            with gr.Accordion(label='Charge Bias',open=False):
                gr.Markdown("""Bias for a specified net charge at a particular pH using the boxes below""")
                with gr.Row():
                    target_charge = gr.Textbox(label="net charge", lines=1, placeholder='net charge to target')
                    target_ph = gr.Textbox(label="pH", lines=1, placeholder='pH at which net charge is desired')
                    charge_potential = gr.Textbox(label="charge potential scale", lines=1, placeholder='charge potential scale (recomended range 1.0-5.0)')

            with gr.Accordion(label='Hydrophobic Bias',open=False):
                gr.Markdown("""Bias for or against hydrophobic composition, to get more soluble proteins, bias away with a negative target score (ex. -5)""")
                with gr.Row():
                    hydrophobic_target_score = gr.Textbox(label="hydrophobic score", lines=1, placeholder='hydrophobic score to target (negative score is good for solublility)')
                    hydrophobic_potential = gr.Textbox(label="hydrophobic potential scale", lines=1, placeholder='hydrophobic potential scale (recomended range 1.0-2.0)')
            
            with gr.Accordion(label='Diffusion Params',open=False):
                gr.Markdown("""Increasing T to more steps can be helpful for harder design challenges, sampling from different distributions can change the sequence and structural composition""")
                with gr.Row():
                    num_steps = gr.Textbox(label="T", lines=1, placeholder='number of diffusion steps (25 or less will speed things up)')
                    noise = gr.Dropdown(['normal','gmm2 [-1,1]','gmm3 [-1,0,1]'], label='noise type', value='normal') 

            btn = gr.Button("GENERATE")

        #with gr.Row():
        with gr.Column():
            gr.Markdown("""## OUTPUTS""")
            gr.Markdown("""#### Confidence score for generated structure at each timestep""")
            plddt_plot = gr.Plot(label='plddt at step t')
            gr.Markdown("""#### Output protein sequnece""")
            output_seq = gr.Textbox(label="sequence")
            gr.Markdown("""#### Download PDB file""")
            output_pdb = gr.File(label="PDB file")
            gr.Markdown("""#### Structure viewer""")
            output_viewer = gr.HTML()

    gr.Markdown("""### Don't know where to get started? Click on an example below to try it out!""")
    gr.Examples(
        [["","125",0.0,0.0,0.2,"","","","","","","20","normal"],
         ["","100",0.0,0.0,0.0,"","W0.2","2","","","","20","normal"],
         ["","100",0.0,0.0,0.0,"XXHHHHHHHHHXXXXXXXHHHHHHHHHXXXXXXXHHHHHHHHXXXXSSSSSSSSSSSXXXXXXXXSSSSSSSSSSSSXXXXXXXSSSSSSSSSXXXXXXX","","","","","","25","normal"],
         ["XXXXXXXXXXXXXXXXXXXXXXXXXIPDXXXXXXXXXXXXXXXXXXXXXXPEPSEQXXXXXXXXXXXXXXXXXXXXXXXXXXIPDXXXXXXXXXXXXXXXXXXX","",0.0,0.0,0.0,"","","","","","","25","normal"]],
        inputs=[sequence, seq_len, helix_bias, 
                strand_bias, loop_bias, 
                secondary_structure, aa_bias, 
                aa_bias_potential, target_charge, 
                target_ph, charge_potential, 
                    num_steps, noise],
        outputs=[output_seq,output_pdb,output_viewer,plddt_plot],
        fn=protein_diffusion_model,
        ) 
    btn.click(protein_diffusion_model, 
                [sequence, 
                 seq_len, 
                 helix_bias, 
                 strand_bias, 
                 loop_bias, 
                 secondary_structure, 
                 aa_bias, 
                 aa_bias_potential, 
                 target_charge, 
                 target_ph, 
                 charge_potential, 
                 num_steps, 
                 noise, 
                 hydrophobic_target_score, 
                 hydrophobic_potential], 
                [output_seq,
                 output_pdb,
                 output_viewer,
                 plddt_plot])

demo.queue()
demo.launch(debug=True)