File size: 10,286 Bytes
21ac434 7bf8be4 20f957a 93b4f33 20f957a 68a2713 21b510b 68a2713 93b4f33 7bf8be4 21b510b 68a2713 20f957a 68a2713 7bf8be4 68a2713 7bf8be4 20f957a 7bf8be4 20f957a 7bf8be4 20f957a 7bf8be4 20f957a 7bf8be4 836b08d 7bf8be4 21b510b 20f957a 7bf8be4 20f957a 7bf8be4 20f957a 7bf8be4 20f957a 836b08d 20f957a 836b08d 90742aa 20f957a 836b08d 90742aa 20f957a 7bf8be4 21b510b 20f957a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
import seaborn as sns
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go
# Set page configuration
st.set_page_config(layout="wide")
# Function to load and clean data
def load_and_clean_data():
df1 = pd.read_csv("data/reviewed_social_media_english.csv")
df2 = pd.read_csv("data/reviewed_news_english.csv")
df3 = pd.read_csv("data/tamil_social_media.csv")
df4 = pd.read_csv("data/tamil_news.csv")
# Concatenate dataframes and clean data
df_combined = pd.concat([df1, df2, df3, df4])
df_combined['Domain'] = df_combined['Domain'].replace({"MUSLIM": "Muslim", "nan": pd.NA, "None": pd.NA, "Other-Ethnic": "Other-Ethnicity"})
df_combined['Sentiment'] = df_combined['Sentiment'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA})
# Drop rows with NA values in 'Domain' and 'Sentiment'
df_combined = df_combined.dropna(subset=['Domain', 'Sentiment'])
return df_combined
df = load_and_clean_data()
# Sidebar Filters
domain_options = df['Domain'].dropna().unique()
channel_options = df['Channel'].dropna().unique()
sentiment_options = df['Sentiment'].dropna().unique()
discrimination_options = df['Discrimination'].dropna().unique()
domain_filter = st.sidebar.multiselect('Select Domain', options=domain_options, default=domain_options)
channel_filter = st.sidebar.multiselect('Select Channel', options=channel_options, default=channel_options)
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options)
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options)
# Apply filters
df_filtered = df[(df['Domain'].isin(domain_filter)) &
(df['Channel'].isin(channel_filter)) &
(df['Sentiment'].isin(sentiment_filter)) &
(df['Discrimination'].isin(discrimination_filter))]
# Define a color palette for consistent visualization styles
color_palette = px.colors.sequential.Viridis
# Page navigation
page = st.sidebar.selectbox("Choose a page", ["Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"])
# Visualisation for Domain Distribution
def create_pie_chart(df, column, title):
fig = px.pie(df, names=column, title=title, hole=0.35)
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
fig.update_traces(marker=dict(colors=color_palette))
return fig
# Visualization for Distribution of Gender versus Ethnicity
def create_gender_ethnicity_distribution_chart(df):
df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
return fig
# Visualization for Sentiment Distribution Across Domains
def create_sentiment_distribution_chart(df):
df['Discrimination'] = df['Discrimination'].replace({"Non Discriminative": "Non-Discriminative"}) # Assuming typo in the original script
domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', title="Sentiment Distribution Across Domains", barmode='stack')
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=12))
return fig
# Visualization for Correlation between Sentiment and Discrimination
def create_sentiment_discrimination_grouped_chart(df):
crosstab_df = pd.crosstab(df['Sentiment'], df['Discrimination']).reset_index()
melted_df = pd.melt(crosstab_df, id_vars='Sentiment', value_vars=['Yes', 'No'], var_name='Discrimination', value_name='Count')
fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=12))
return fig
# Function for Top Domains with Negative Sentiment Chart
def create_top_negative_sentiment_domains_chart(df):
domain_counts = df.groupby(['Domain', 'Sentiment']).size().unstack(fill_value=0)
domain_counts.sort_values(by='Negative', ascending=False, inplace=True)
domain_counts_subset = domain_counts.iloc[:3, [0]]
domain_counts_subset = domain_counts_subset.rename(columns={domain_counts_subset.columns[0]: 'Count'})
domain_counts_subset = domain_counts_subset.reset_index()
colors = ['limegreen', 'crimson', 'darkcyan']
fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain',
orientation='h', color_discrete_sequence=colors)
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Negative sentiment content Count", yaxis_title="Domain")
return fig
# Function for Key Phrases in Negative Sentiment Content Chart
def create_key_phrases_negative_sentiment_chart(df):
cv = CountVectorizer(ngram_range=(3,3), stop_words='english')
trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Negative'])
count_values = trigrams.toarray().sum(axis=0)
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
ngram_freq.columns = ['frequency', 'ngram']
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Negative Sentiment Content')
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Frequency", yaxis_title="Trigram")
return fig
# Function for Prevalence of Discriminatory Content Chart
def create_prevalence_discriminatory_content_chart(df):
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group',
title='Prevalence of Discriminatory Content')
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Domain", yaxis_title="Count")
return fig
# Function for Top Domains with Discriminatory Content Chart
def create_top_discriminatory_domains_chart(df):
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
domain_counts.sort_values(by='Discriminative', ascending=False, inplace=True)
domain_counts_subset = domain_counts.iloc[:3]
domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'})
fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h',
title='Top Domains with Discriminatory Content')
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Discriminatory Content Count", yaxis_title="Domain")
return fig
# Function for Channel-wise Sentiment Over Time Chart
def create_channel_sentiment_over_time_chart(df):
df['Date'] = pd.to_datetime(df['Date'])
timeline = df.groupby([df['Date'].dt.to_period('M'), 'Channel', 'Sentiment']).size().unstack(fill_value=0)
fig = px.line(timeline, x=timeline.index.levels[1].to_timestamp(), y=['Positive', 'Negative', 'Neutral'], color='Channel')
fig.update_layout(title='Channel-wise Sentiment Over Time', margin=dict(l=20, r=20, t=40, b=20))
return fig
# Function for Channel-wise Distribution of Discriminative Content Chart
def create_channel_discrimination_chart(df):
channel_discrimination = df.groupby(['Channel', 'Discrimination']).size().unstack(fill_value=0)
fig = px.bar(channel_discrimination, x=channel_discrimination.index, y=['Discriminative', 'Non-Discriminative'], barmode='group')
fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=20, r=20, t=40, b=20))
return fig
# Function for rendering dashboard
def render_dashboard(page, df_filtered):
if page == "Overview":
st.title("Overview Dashboard")
# Create 2x2 grid for overview visualizations
col1, col2 = st.beta_columns(2)
with col1:
st.plotly_chart(create_pie_chart(df_filtered, 'Domain', 'Distribution of Domains'))
with col2:
st.plotly_chart(create_gender_ethnicity_distribution_chart(df_filtered))
col3, col4 = st.beta_columns(2)
with col3:
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
with col4:
st.plotly_chart(create_sentiment_discrimination_grouped_chart(df_filtered))
elif page == "Sentiment Analysis":
st.title("Sentiment Analysis Dashboard")
# Create visualizations for the sentiment analysis page
col1, col2 = st.beta_columns(2)
with col1:
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
with col2:
st.plotly_chart(create_top_negative_sentiment_domains_chart(df_filtered))
col3, col4 = st.beta_columns(2)
with col3:
st.plotly_chart(create_key_phrases_negative_sentiment_chart(df_filtered))
elif page == "Discrimination Analysis":
st.title("Discrimination Analysis Dashboard")
# Create visualizations for the discrimination analysis page
col1, col2 = st.beta_columns(2)
with col1:
st.plotly_chart(create_prevalence_discriminatory_content_chart(df_filtered))
with col2:
st.plotly_chart(create_top_discriminatory_domains_chart(df_filtered))
elif page == "Channel Analysis":
st.title("Channel Analysis Dashboard")
# Create visualizations for the channel analysis page
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(create_channel_sentiment_over_time_chart(df_filtered))
with col2:
st.plotly_chart(create_channel_discrimination_chart(df_filtered))
# Render the selected dashboard page
render_dashboard(page, df_filtered)
|