File size: 10,286 Bytes
21ac434
7bf8be4
 
 
 
 
 
 
 
 
 
 
20f957a
93b4f33
 
 
 
 
 
20f957a
68a2713
21b510b
 
 
 
 
68a2713
93b4f33
 
 
7bf8be4
21b510b
 
 
 
 
68a2713
 
 
 
 
 
20f957a
68a2713
 
 
 
7bf8be4
68a2713
 
7bf8be4
 
 
 
20f957a
 
 
 
7bf8be4
 
 
20f957a
 
 
 
 
 
 
 
7bf8be4
20f957a
 
 
 
7bf8be4
 
20f957a
 
 
 
 
 
 
7bf8be4
836b08d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf8be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21b510b
20f957a
7bf8be4
20f957a
 
7bf8be4
 
20f957a
7bf8be4
20f957a
 
 
 
 
 
 
 
 
 
836b08d
 
 
 
 
 
20f957a
836b08d
 
 
90742aa
20f957a
 
836b08d
 
 
 
 
90742aa
20f957a
 
 
 
 
 
 
 
 
7bf8be4
21b510b
20f957a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
import seaborn as sns
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go

# Set page configuration
st.set_page_config(layout="wide")

# Function to load and clean data
def load_and_clean_data():
    df1 = pd.read_csv("data/reviewed_social_media_english.csv")
    df2 = pd.read_csv("data/reviewed_news_english.csv")
    df3 = pd.read_csv("data/tamil_social_media.csv")  
    df4 = pd.read_csv("data/tamil_news.csv")       

    # Concatenate dataframes and clean data
    df_combined = pd.concat([df1, df2, df3, df4])
    df_combined['Domain'] = df_combined['Domain'].replace({"MUSLIM": "Muslim", "nan": pd.NA, "None": pd.NA, "Other-Ethnic": "Other-Ethnicity"})
    df_combined['Sentiment'] = df_combined['Sentiment'].replace({"nan": pd.NA, "None": pd.NA, "No": pd.NA})

    # Drop rows with NA values in 'Domain' and 'Sentiment'
    df_combined = df_combined.dropna(subset=['Domain', 'Sentiment'])

    return df_combined

df = load_and_clean_data()

# Sidebar Filters
domain_options = df['Domain'].dropna().unique()
channel_options = df['Channel'].dropna().unique()
sentiment_options = df['Sentiment'].dropna().unique()
discrimination_options = df['Discrimination'].dropna().unique()

domain_filter = st.sidebar.multiselect('Select Domain', options=domain_options, default=domain_options)
channel_filter = st.sidebar.multiselect('Select Channel', options=channel_options, default=channel_options)
sentiment_filter = st.sidebar.multiselect('Select Sentiment', options=sentiment_options, default=sentiment_options)
discrimination_filter = st.sidebar.multiselect('Select Discrimination', options=discrimination_options, default=discrimination_options)

# Apply filters
df_filtered = df[(df['Domain'].isin(domain_filter)) & 
                 (df['Channel'].isin(channel_filter)) & 
                 (df['Sentiment'].isin(sentiment_filter)) & 
                 (df['Discrimination'].isin(discrimination_filter))]

# Define a color palette for consistent visualization styles
color_palette = px.colors.sequential.Viridis

# Page navigation
page = st.sidebar.selectbox("Choose a page", ["Overview", "Sentiment Analysis", "Discrimination Analysis", "Channel Analysis"])

# Visualisation for Domain Distribution
def create_pie_chart(df, column, title):
    fig = px.pie(df, names=column, title=title, hole=0.35)
    fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
    fig.update_traces(marker=dict(colors=color_palette))
    return fig

# Visualization for Distribution of Gender versus Ethnicity
def create_gender_ethnicity_distribution_chart(df):
    df['GenderOrEthnicity'] = df['Domain'].apply(lambda x: "Gender: Women & LGBTQIA+" if x in ["Women", "LGBTQIA+"] else "Ethnicity")
    fig = px.pie(df, names='GenderOrEthnicity', title='Distribution of Gender versus Ethnicity', hole=0.35)
    fig.update_layout(margin=dict(l=20, r=20, t=30, b=20), legend=dict(x=0.1, y=1), font=dict(size=12))
    return fig

# Visualization for Sentiment Distribution Across Domains
def create_sentiment_distribution_chart(df):
    df['Discrimination'] = df['Discrimination'].replace({"Non Discriminative": "Non-Discriminative"})  # Assuming typo in the original script
    domain_counts = df.groupby(['Domain', 'Sentiment']).size().reset_index(name='counts')
    fig = px.bar(domain_counts, x='Domain', y='counts', color='Sentiment', title="Sentiment Distribution Across Domains", barmode='stack')
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Domain", yaxis_title="Counts", font=dict(size=12))
    return fig

# Visualization for Correlation between Sentiment and Discrimination
def create_sentiment_discrimination_grouped_chart(df):
    crosstab_df = pd.crosstab(df['Sentiment'], df['Discrimination']).reset_index()
    melted_df = pd.melt(crosstab_df, id_vars='Sentiment', value_vars=['Yes', 'No'], var_name='Discrimination', value_name='Count')
    fig = px.bar(melted_df, x='Sentiment', y='Count', color='Discrimination', barmode='group', title="Sentiment vs. Discrimination")
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=12))
    return fig

# Function for Top Domains with Negative Sentiment Chart
def create_top_negative_sentiment_domains_chart(df):
    domain_counts = df.groupby(['Domain', 'Sentiment']).size().unstack(fill_value=0)
    domain_counts.sort_values(by='Negative', ascending=False, inplace=True)
    domain_counts_subset = domain_counts.iloc[:3, [0]]
    domain_counts_subset = domain_counts_subset.rename(columns={domain_counts_subset.columns[0]: 'Count'})
    domain_counts_subset = domain_counts_subset.reset_index()
    colors = ['limegreen', 'crimson', 'darkcyan']
    fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain',
                 orientation='h', color_discrete_sequence=colors)
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Negative sentiment content Count", yaxis_title="Domain")
    return fig

# Function for Key Phrases in Negative Sentiment Content Chart
def create_key_phrases_negative_sentiment_chart(df):
    cv = CountVectorizer(ngram_range=(3,3), stop_words='english')
    trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Negative'])
    count_values = trigrams.toarray().sum(axis=0)
    ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
    ngram_freq.columns = ['frequency', 'ngram']
    fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Negative Sentiment Content')
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Frequency", yaxis_title="Trigram")
    return fig

# Function for Prevalence of Discriminatory Content Chart
def create_prevalence_discriminatory_content_chart(df):
    domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
    fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group',
                 title='Prevalence of Discriminatory Content')
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Domain", yaxis_title="Count")
    return fig

# Function for Top Domains with Discriminatory Content Chart
def create_top_discriminatory_domains_chart(df):
    domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
    domain_counts.sort_values(by='Discriminative', ascending=False, inplace=True)
    domain_counts_subset = domain_counts.iloc[:3]
    domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'})
    fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h',
                 title='Top Domains with Discriminatory Content')
    fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Discriminatory Content Count", yaxis_title="Domain")
    return fig

# Function for Channel-wise Sentiment Over Time Chart
def create_channel_sentiment_over_time_chart(df):
    df['Date'] = pd.to_datetime(df['Date'])
    timeline = df.groupby([df['Date'].dt.to_period('M'), 'Channel', 'Sentiment']).size().unstack(fill_value=0)
    fig = px.line(timeline, x=timeline.index.levels[1].to_timestamp(), y=['Positive', 'Negative', 'Neutral'], color='Channel')
    fig.update_layout(title='Channel-wise Sentiment Over Time', margin=dict(l=20, r=20, t=40, b=20))
    return fig

# Function for Channel-wise Distribution of Discriminative Content Chart
def create_channel_discrimination_chart(df):
    channel_discrimination = df.groupby(['Channel', 'Discrimination']).size().unstack(fill_value=0)
    fig = px.bar(channel_discrimination, x=channel_discrimination.index, y=['Discriminative', 'Non-Discriminative'], barmode='group')
    fig.update_layout(title='Channel-wise Distribution of Discriminative Content', margin=dict(l=20, r=20, t=40, b=20))
    return fig

# Function for rendering dashboard
def render_dashboard(page, df_filtered):
    if page == "Overview":
        st.title("Overview Dashboard")
        # Create 2x2 grid for overview visualizations
        col1, col2 = st.beta_columns(2)
        with col1:
            st.plotly_chart(create_pie_chart(df_filtered, 'Domain', 'Distribution of Domains'))
        with col2:
            st.plotly_chart(create_gender_ethnicity_distribution_chart(df_filtered))

        col3, col4 = st.beta_columns(2)
        with col3:
            st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
        with col4:
            st.plotly_chart(create_sentiment_discrimination_grouped_chart(df_filtered))

    elif page == "Sentiment Analysis":
        st.title("Sentiment Analysis Dashboard")
        # Create visualizations for the sentiment analysis page
        col1, col2 = st.beta_columns(2)
        with col1:
            st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
        with col2:
            st.plotly_chart(create_top_negative_sentiment_domains_chart(df_filtered))

        col3, col4 = st.beta_columns(2)
        with col3:
            st.plotly_chart(create_key_phrases_negative_sentiment_chart(df_filtered))

    elif page == "Discrimination Analysis":
        st.title("Discrimination Analysis Dashboard")
        # Create visualizations for the discrimination analysis page
        col1, col2 = st.beta_columns(2)
        with col1:
            st.plotly_chart(create_prevalence_discriminatory_content_chart(df_filtered))
        with col2:
            st.plotly_chart(create_top_discriminatory_domains_chart(df_filtered))

    elif page == "Channel Analysis":
        st.title("Channel Analysis Dashboard")
        # Create visualizations for the channel analysis page
        col1, col2 = st.columns(2)
        with col1:
            st.plotly_chart(create_channel_sentiment_over_time_chart(df_filtered))
        with col2:
            st.plotly_chart(create_channel_discrimination_chart(df_filtered))

# Render the selected dashboard page
render_dashboard(page, df_filtered)