Update app.py
Browse files
app.py
CHANGED
@@ -82,6 +82,49 @@ def create_sentiment_discrimination_grouped_chart(df):
|
|
82 |
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=12))
|
83 |
return fig
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# Function for Channel-wise Sentiment Over Time Chart
|
86 |
def create_channel_sentiment_over_time_chart(df):
|
87 |
df['Date'] = pd.to_datetime(df['Date'])
|
@@ -116,11 +159,25 @@ def render_dashboard(page, df_filtered):
|
|
116 |
|
117 |
elif page == "Sentiment Analysis":
|
118 |
st.title("Sentiment Analysis Dashboard")
|
119 |
-
#
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
121 |
elif page == "Discrimination Analysis":
|
122 |
st.title("Discrimination Analysis Dashboard")
|
123 |
-
#
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
elif page == "Channel Analysis":
|
126 |
st.title("Channel Analysis Dashboard")
|
|
|
82 |
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Sentiment", yaxis_title="Count", font=dict(size=12))
|
83 |
return fig
|
84 |
|
85 |
+
# Function for Top Domains with Negative Sentiment Chart
|
86 |
+
def create_top_negative_sentiment_domains_chart(df):
|
87 |
+
domain_counts = df.groupby(['Domain', 'Sentiment']).size().unstack(fill_value=0)
|
88 |
+
domain_counts.sort_values(by='Negative', ascending=False, inplace=True)
|
89 |
+
domain_counts_subset = domain_counts.iloc[:3, [0]]
|
90 |
+
domain_counts_subset = domain_counts_subset.rename(columns={domain_counts_subset.columns[0]: 'Count'})
|
91 |
+
domain_counts_subset = domain_counts_subset.reset_index()
|
92 |
+
colors = ['limegreen', 'crimson', 'darkcyan']
|
93 |
+
fig = px.bar(domain_counts_subset, x='Count', y='Domain', title='Top Domains with Negative Sentiment', color='Domain',
|
94 |
+
orientation='h', color_discrete_sequence=colors)
|
95 |
+
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Negative sentiment content Count", yaxis_title="Domain")
|
96 |
+
return fig
|
97 |
+
|
98 |
+
# Function for Key Phrases in Negative Sentiment Content Chart
|
99 |
+
def create_key_phrases_negative_sentiment_chart(df):
|
100 |
+
cv = CountVectorizer(ngram_range=(3,3), stop_words='english')
|
101 |
+
trigrams = cv.fit_transform(df['Content'][df['Sentiment'] == 'Negative'])
|
102 |
+
count_values = trigrams.toarray().sum(axis=0)
|
103 |
+
ngram_freq = pd.DataFrame(sorted([(count_values[i], k) for k, i in cv.vocabulary_.items()], reverse=True))
|
104 |
+
ngram_freq.columns = ['frequency', 'ngram']
|
105 |
+
fig = px.bar(ngram_freq.head(10), x='frequency', y='ngram', orientation='h', title='Key phrases in Negative Sentiment Content')
|
106 |
+
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Frequency", yaxis_title="Trigram")
|
107 |
+
return fig
|
108 |
+
|
109 |
+
# Function for Prevalence of Discriminatory Content Chart
|
110 |
+
def create_prevalence_discriminatory_content_chart(df):
|
111 |
+
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
|
112 |
+
fig = px.bar(domain_counts, x=domain_counts.index, y=['Discriminative', 'Non-Discriminative'], barmode='group',
|
113 |
+
title='Prevalence of Discriminatory Content')
|
114 |
+
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Domain", yaxis_title="Count")
|
115 |
+
return fig
|
116 |
+
|
117 |
+
# Function for Top Domains with Discriminatory Content Chart
|
118 |
+
def create_top_discriminatory_domains_chart(df):
|
119 |
+
domain_counts = df.groupby(['Domain', 'Discrimination']).size().unstack(fill_value=0)
|
120 |
+
domain_counts.sort_values(by='Discriminative', ascending=False, inplace=True)
|
121 |
+
domain_counts_subset = domain_counts.iloc[:3]
|
122 |
+
domain_counts_subset = domain_counts_subset.rename(columns={'Discriminative': 'Count'})
|
123 |
+
fig = px.bar(domain_counts_subset, x='Count', y=domain_counts_subset.index, orientation='h',
|
124 |
+
title='Top Domains with Discriminatory Content')
|
125 |
+
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Discriminatory Content Count", yaxis_title="Domain")
|
126 |
+
return fig
|
127 |
+
|
128 |
# Function for Channel-wise Sentiment Over Time Chart
|
129 |
def create_channel_sentiment_over_time_chart(df):
|
130 |
df['Date'] = pd.to_datetime(df['Date'])
|
|
|
159 |
|
160 |
elif page == "Sentiment Analysis":
|
161 |
st.title("Sentiment Analysis Dashboard")
|
162 |
+
# Create visualizations for the sentiment analysis page
|
163 |
+
col1, col2 = st.beta_columns(2)
|
164 |
+
with col1:
|
165 |
+
st.plotly_chart(create_sentiment_distribution_chart(df_filtered))
|
166 |
+
with col2:
|
167 |
+
st.plotly_chart(create_top_negative_sentiment_domains_chart(df_filtered))
|
168 |
|
169 |
+
col3, col4 = st.beta_columns(2)
|
170 |
+
with col3:
|
171 |
+
st.plotly_chart(create_key_phrases_negative_sentiment_chart(df_filtered))
|
172 |
+
|
173 |
elif page == "Discrimination Analysis":
|
174 |
st.title("Discrimination Analysis Dashboard")
|
175 |
+
# Create visualizations for the discrimination analysis page
|
176 |
+
col1, col2 = st.beta_columns(2)
|
177 |
+
with col1:
|
178 |
+
st.plotly_chart(create_prevalence_discriminatory_content_chart(df_filtered))
|
179 |
+
with col2:
|
180 |
+
st.plotly_chart(create_top_discriminatory_domains_chart(df_filtered))e
|
181 |
|
182 |
elif page == "Channel Analysis":
|
183 |
st.title("Channel Analysis Dashboard")
|