Spaces:
Runtime error
Runtime error
File size: 6,123 Bytes
c334626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# ---------------------------------------------------------------
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# This file has been modified from a file in the torchvision library
# which was released under the BSD 3-Clause License.
#
# Source:
# https://github.com/pytorch/vision/blob/ea6b879e90459006e71a164dc76b7e2cc3bff9d9/torchvision/datasets/lsun.py
#
# The license for the original version of this file can be
# found in this directory (LICENSE_torchvision). The modifications
# to this file are subject to the same BSD 3-Clause License.
# ---------------------------------------------------------------
from torchvision.datasets.vision import VisionDataset
from PIL import Image
import os
import os.path
import io
import string
from collections.abc import Iterable
import pickle
from torchvision.datasets.utils import verify_str_arg, iterable_to_str
class LSUNClass(VisionDataset):
def __init__(self, root, transform=None, target_transform=None):
import lmdb
super(LSUNClass, self).__init__(root, transform=transform,
target_transform=target_transform)
self.env = lmdb.open(root, max_readers=1, readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
self.length = txn.stat()['entries']
# cache_file = '_cache_' + ''.join(c for c in root if c in string.ascii_letters)
# av begin
# We only modified the location of cache_file.
cache_file = os.path.join(self.root, '_cache_')
# av end
if os.path.isfile(cache_file):
self.keys = pickle.load(open(cache_file, "rb"))
else:
with self.env.begin(write=False) as txn:
self.keys = [key for key, _ in txn.cursor()]
pickle.dump(self.keys, open(cache_file, "wb"))
def __getitem__(self, index):
img, target = None, -1
env = self.env
with env.begin(write=False) as txn:
imgbuf = txn.get(self.keys[index])
buf = io.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf).convert('RGB')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return self.length
class LSUN(VisionDataset):
"""
`LSUN <https://www.yf.io/p/lsun>`_ dataset.
Args:
root (string): Root directory for the database files.
classes (string or list): One of {'train', 'val', 'test'} or a list of
categories to load. e,g. ['bedroom_train', 'church_outdoor_train'].
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
"""
def __init__(self, root, classes='train', transform=None, target_transform=None):
super(LSUN, self).__init__(root, transform=transform,
target_transform=target_transform)
self.classes = self._verify_classes(classes)
# for each class, create an LSUNClassDataset
self.dbs = []
for c in self.classes:
self.dbs.append(LSUNClass(
root=root + '/' + c + '_lmdb',
transform=transform))
self.indices = []
count = 0
for db in self.dbs:
count += len(db)
self.indices.append(count)
self.length = count
def _verify_classes(self, classes):
categories = ['bedroom', 'bridge', 'church_outdoor', 'classroom',
'conference_room', 'dining_room', 'kitchen',
'living_room', 'restaurant', 'tower', 'cat']
dset_opts = ['train', 'val', 'test']
try:
verify_str_arg(classes, "classes", dset_opts)
if classes == 'test':
classes = [classes]
else:
classes = [c + '_' + classes for c in categories]
except ValueError:
if not isinstance(classes, Iterable):
msg = ("Expected type str or Iterable for argument classes, "
"but got type {}.")
raise ValueError(msg.format(type(classes)))
classes = list(classes)
msg_fmtstr = ("Expected type str for elements in argument classes, "
"but got type {}.")
for c in classes:
verify_str_arg(c, custom_msg=msg_fmtstr.format(type(c)))
c_short = c.split('_')
category, dset_opt = '_'.join(c_short[:-1]), c_short[-1]
msg_fmtstr = "Unknown value '{}' for {}. Valid values are {{{}}}."
msg = msg_fmtstr.format(category, "LSUN class",
iterable_to_str(categories))
verify_str_arg(category, valid_values=categories, custom_msg=msg)
msg = msg_fmtstr.format(dset_opt, "postfix", iterable_to_str(dset_opts))
verify_str_arg(dset_opt, valid_values=dset_opts, custom_msg=msg)
return classes
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target) where target is the index of the target category.
"""
target = 0
sub = 0
for ind in self.indices:
if index < ind:
break
target += 1
sub = ind
db = self.dbs[target]
index = index - sub
if self.target_transform is not None:
target = self.target_transform(target)
img, _ = db[index]
return img, target
def __len__(self):
return self.length
def extra_repr(self):
return "Classes: {classes}".format(**self.__dict__)
|