File size: 23,066 Bytes
9aab279
936f70e
9aab279
 
 
 
 
 
 
969b08f
9aab279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
969b08f
 
 
 
 
 
 
 
 
 
6ce27ed
969b08f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae74e8
9aab279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae74e8
 
c7bb00d
 
 
eae74e8
 
 
 
f5821a7
eae74e8
 
 
 
 
 
 
 
0df268f
 
 
eae74e8
 
 
 
0df268f
 
 
 
 
 
 
eae74e8
 
9aab279
eae74e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aab279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ce27ed
eae74e8
9aab279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
969b08f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ce27ed
969b08f
eae74e8
 
969b08f
eae74e8
 
969b08f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3736f83
1ec460c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import math
from groq import Groq
#from typing import Optional, Tuple
import smolagents
#from smolagents import tool
#import smolagents[litellm]
import os
import re
import requests
import gradio as gr
from langchain_community.chat_models import ChatHuggingFace
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.agents import Tool, AgentExecutor, initialize_agent
from langchain.agents import AgentType
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import SystemMessage
from langchain.memory import ConversationBufferWindowMemory
from youtube_transcript_api import YouTubeTranscriptApi
import pytesseract
import cv2
import pandas as pd
from langchain.tools import tool
from huggingface_hub import InferenceClient # Explicitly import InferenceClient

import json
import inspect
from typing import List, Dict, Optional, Callable, Any
import cv2
import pytesseract
import pandas as pd
from langchain_community.utilities import WikipediaAPIWrapper, DuckDuckGoSearchAPIWrapper
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma


import os
import gradio as gr
import requests
import inspect
import pandas as pd

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
'''
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        fixed_answer = "This is a default answer."
        print(f"Agent returning fixed answer: {fixed_answer}")
        return fixed_answer
'''



'''
class CodeAgent:
    def __init__(
        self,
        client,
        model: str = "llama-3.3-70b-versatile",
        system_prompt: str = "",
        tools: Optional[List[Dict]] = None,
        tool_functions: Optional[Dict[str, Callable]] = None
    ):
        self.client = client
        self.model = model
        self.conversation_history = [
            {
                "role": "system", 
                "content": f"{system_prompt}\n\nIMPORTANT: Always respond with complete, natural "
                          "language answers. Never show raw function calls to the user."
            }
        ]
        self.tools = tools or []
        self.tool_functions = tool_functions or {}

    def add_tool(self, tool_definition: Dict, tool_function: Callable) -> None:
        self.tools.append(tool_definition)
        self.tool_functions[tool_definition["function"]["name"]] = tool_function

    def add_langchain_tools(self, tools: List[Callable]) -> None:
        for tool_func in tools:
            tool_def = self._convert_tool_to_definition(tool_func)
            self.add_tool(tool_def, tool_func)

    def _convert_tool_to_definition(self, tool_func: Callable) -> Dict:
        docstring = inspect.getdoc(tool_func) or ""
        description = docstring.split("\n")[0] if docstring else tool_func.__name__
        
        sig = inspect.signature(tool_func)
        parameters = {"type": "object", "properties": {}, "required": []}
        
        for name, param in sig.parameters.items():
            if name == "self":
                continue
                
            param_info = {"type": "string", "description": ""}
            for line in docstring.split("\n")[1:]:
                line = line.strip()
                if line.startswith(f"{name}:"):
                    param_info["description"] = line[len(f"{name}:"):].strip()
                    break
            
            parameters["properties"][name] = param_info
            parameters["required"].append(name)
        
        return {
            "type": "function",
            "function": {
                "name": tool_func.__name__,
                "description": description,
                "parameters": parameters
            }
        }

    def get_response(self, user_message: str) -> str:
        self.add_message("user", user_message)

        while True:
            response = self.client.chat.completions.create(
                messages=self.conversation_history,
                model=self.model,
                tools=self.tools if self.tools else None
            )
            
            message = response.choices[0].message

            if not hasattr(message, 'tool_calls') or not message.tool_calls:
                self.add_message("assistant", message.content)
                return message.content

            for tool_call in message.tool_calls:
                self._process_tool_call(tool_call)

            self._add_tool_call_message(message)

    def _process_tool_call(self, tool_call: Any) -> None:
        tool_name = tool_call.function.name
        try:
            arguments = json.loads(tool_call.function.arguments)
            tool_result = self._execute_tool(tool_name, arguments)

            # ✅ Correct format for OpenAI/Groq API
            self.conversation_history.append({
                "role": "tool",
                "tool_call_id": tool_call.id,
                "content": str(tool_result)
            })

        except Exception as e:
            self.conversation_history.append({
                "role": "tool",
                "tool_call_id": tool_call.id,
                "content": f"Error: {str(e)}"
            })

    def _add_tool_call_message(self, message: Any) -> None:
        self.conversation_history.append({
            "role": "assistant",
            "content": None,
            "tool_calls": [{
                "id": tc.id,
                "function": {
                    "name": tc.function.name,
                    "arguments": tc.function.arguments
                },
                "type": "function"
            } for tc in message.tool_calls]
        })

    def _execute_tool(self, tool_name: str, arguments: Dict) -> Any:
        if tool_name not in self.tool_functions:
            raise ValueError(f"Tool not found: {tool_name}")
        return self.tool_functions[tool_name](**arguments)

    def add_message(self, role: str, content: str) -> None:
        self.conversation_history.append({"role": role, "content": content})

    def get_conversation_history(self) -> List[Dict]:
        return self.conversation_history

    def clear_history(self, keep_system_prompt: bool = True) -> None:
        if keep_system_prompt and self.conversation_history:
            system_msg = self.conversation_history[0] if self.conversation_history[0]["role"] == "system" else None
            self.conversation_history = [system_msg] if system_msg else []
        else:
            self.conversation_history = []

'''

#import json
#from groq import Groq
#from langchain.agents.tools import Tool

class MyAgent:
    def __init__(self):
        self.client = Groq()
        self.model =  "llama3-70b-8192"  #  "llama-3.3-70b-versatile" Keeping your original model
        self.conversation_history = []
        self.tools = self._define_tools()
        self._add_system_prompt()

    def _add_system_prompt(self):
        self.conversation_history.append({
            "role": "system",
            "content": (
                "You are a helpful assistant tasked with answering questions using a set of tools when needed. "
                "Always reason step-by-step internally, but only return the final answer to the user without any explanation. "
                "If a tool is needed, respond in JSON format like:\n"
                "{\n"
                "  \"tool\": \"tool_name\",\n"
                "  \"args\": {\"arg1\": \"value1\", ...}\n"
                "}\n"
                "Once the tool returns a result, respond with the final answer only, following these rules:\n"
                "- Use a number, a short string, or a comma-separated list of numbers/strings.\n"
                "- Do not include commas in numbers (e.g., use 1000 not 1,000).\n"
                "- Do not include units like \"$\" or \"%\" unless explicitly asked.\n"
                "- For strings, avoid articles (e.g., no 'the', 'a') and avoid abbreviations (e.g., use 'New York City' not 'NYC').\n"
                "- Write digits plainly (e.g., '2025' not 'two thousand twenty-five').\n"
                "Do not prepend any labels to the final answer."
            )
        })

    def _define_tools(self):
        def web_search(query: str) -> str:
            # Replace with actual implementation
            return f"[WEB RESULT for: {query}]"

        def calculator(expression: str) -> str:
            try:
                return str(eval(expression))
            except Exception as e:
                return f"Error: {e}"

        return [
            Tool.from_function(
                name="web_search",
                func=web_search,
                description="Search the web for current information."
            ),
            Tool.from_function(
                name="calculator",
                func=calculator,
                description="Evaluate a math expression."
            ),
        ]

    def _execute_tool(self, tool_name, args):
        for tool in self.tools:
            if tool.name == tool_name:
                return tool.func(**args)
        return f"Tool '{tool_name}' not found."

    def add_message(self, role, content):
        self.conversation_history.append({"role": role, "content": content})

    def get_response(self, user_message: str) -> str:
        self.add_message("user", user_message)

        response = self.client.chat.completions.create(
            model=self.model,
            messages=self.conversation_history
        )

        message = response.choices[0].message
        assistant_reply = message.content.strip()
        self.add_message("assistant", assistant_reply)

        # Try to detect and parse JSON tool call
        if assistant_reply.startswith("{") and "tool" in assistant_reply:
            try:
                tool_call = json.loads(assistant_reply)
                tool_name = tool_call.get("tool")
                args = tool_call.get("args", {})
                result = self._execute_tool(tool_name, args)
                self.add_message("tool", result)
                return result
            except Exception as e:
                error_msg = f"Error executing tool: {e}"
                self.add_message("tool", error_msg)
                return error_msg

        return assistant_reply
'''
# ===== Tool Implementations =====
def wikipedia_search(query: str) -> str:
    """Search Wikipedia and return summary."""
    try:
        return WikipediaAPIWrapper().run(query)
    except Exception as e:
        return f"Wikipedia error: {str(e)}"

def web_search(query: str) -> str:
    """Search the web using DuckDuckGo."""
    try:
        return DuckDuckGoSearchAPIWrapper().run(query)
    except Exception as e:
        return f"Search error: {str(e)}"

def youtube_transcript(url: str) -> str:
    """Extract transcript from a YouTube video URL."""
    try:
        video_id = url.split("v=")[-1].split("&")[0]
        transcript = YouTubeTranscriptApi.get_transcript(video_id)
        return "\n".join([x["text"] for x in transcript])
    except Exception as e:
        return f"YouTube error: {str(e)}"

def image_ocr(path: str) -> str:
    """Extract text from an image file."""
    try:
        img = cv2.imread(path)
        if img is None:
            return "Error: Could not read image file"
        return pytesseract.image_to_string(img)
    except Exception as e:
        return f"OCR error: {str(e)}"

def read_excel(path: str) -> str:
    """Read contents of an Excel (.xlsx) file."""
    try:
        df = pd.read_excel(path)
        return df.head(100).to_string()  # Limit output size
    except Exception as e:
        return f"Excel error: {str(e)}"

def math_calc(expression: str) -> str:
    """Evaluate a math expression safely."""
    try:
        allowed_chars = set('0123456789+-*/.() ')
        if not all(c in allowed_chars for c in expression):
            return "Error: Invalid characters in expression"
        return str(eval(expression, {"__builtins__": None}, {}))
    except Exception as e:
        return f"Math error: {str(e)}"
'''
'''
# === Example Usage ===
if __name__ == "__main__":
    from groq import Groq
    import os

    # Initialize client
    #client = Groq(api_key=userdata.get('GROQ_API_KEY'))
    client = Groq(api_key=os.getenv("GROQ_API_KEY"))
    # Create agent
    agent = CodeAgent(client=client,model="llama-3.3-70b-versatile",system_prompt="You are a helpful AI assistant with access to tools.")

    # Add tools
    tools = [wikipedia_search,web_search,youtube_transcript,math_calc]
    agent.add_langchain_tools(tools)

    # Example queries
    print(agent.get_response("What is machine learning?"))
    print(agent.get_response("Calculate 2 + 2 * 3"))
    #print(agent.get_response("Search for latest AI news"))
'''

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        
        # Create agent
        #agent = CodeAgent(client=client,model="llama-3.3-70b-versatile",system_prompt="You are a helpful AI assistant with access to tools.")
        agent = MyAgent()
        # Add tools
        #tools = [wikipedia_search,web_search,youtube_transcript,math_calc]
        #agent.add_langchain_tools(tools)
        #agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent.get_response(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)
'''prompt = """
You are a helpful assistant tasked with answering questions using a set of tools through tool calls in JSON format.
For each question, think step-by-step. If a tool is required, call it using a properly structured tool_call in JSON format including 'tool_call_id'.

After using tools, return the final answer in the following format:
- A single number, or
- A single word or phrase, or
- A comma-separated list of numbers and/or strings.

Formatting guidelines for answers:
- Do not include units such as $, %, kg, etc., unless explicitly asked.
- Do not use commas in numbers (write 1000000, not 1,000,000).
- Do not use abbreviations (e.g., use 'los angeles' instead of 'la').
- Do not use articles (e.g., use 'banana' instead of 'a banana').
- Numbers must be in digits.
- Strings must be lowercase and space-separated if needed.

Your output must directly start with the answer — do not prepend anything like 'Answer:', 'The answer is:', or similar.

Example tool call structure (when using a tool):
{
  "tool_call_id": "example-id",
  "function": {
    "name": "web_search",
    "arguments": {
      "query": "current population of india"
    }
  }
}
"""'''