File size: 14,826 Bytes
3df2411
3084b43
31df6b5
fcb3d32
 
3084b43
 
 
 
4b1523c
 
9617ef8
3084b43
 
 
 
 
 
 
 
1b9a109
4b1523c
 
 
b48c6f4
4b1523c
 
 
 
b48c6f4
 
4b1523c
3df2411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b48c6f4
31df6b5
b48c6f4
 
0f024f3
b48c6f4
 
 
 
83e8fde
b48c6f4
 
 
 
 
 
 
24529a5
3df2411
 
24529a5
3df2411
 
 
 
 
 
 
 
 
 
 
 
 
e2355a1
 
 
 
31df6b5
e2355a1
3df2411
e2355a1
31df6b5
 
4b1523c
 
31df6b5
b48c6f4
3df2411
e2355a1
24529a5
 
 
 
 
 
 
 
3084b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fc841
3084b43
 
 
 
23fc841
 
 
 
 
 
3084b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b48c6f4
24529a5
b48c6f4
24529a5
 
 
b48c6f4
24529a5
 
 
 
 
b48c6f4
24529a5
 
b48c6f4
24529a5
b48c6f4
0f024f3
a7ae3fd
2d7fa52
 
 
a7ae3fd
2d7fa52
 
 
 
a7ae3fd
2d7fa52
a7ae3fd
24529a5
3084b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd665ab
3084b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
'''
#AIzaSyDmNtYorO3UXgcRwgKz74JgJvdyh1YfxI4
from langchain_community.chat_models import ChatHuggingFace
from langchain_google_genai import ChatGoogleGenerativeAI
import gradio as gr
import requests
import inspect
import pandas as pd
from langchain.chat_models import ChatOpenAI
#from langchain.agents import Tool, initialize_agent
#from langchain.agents.agent_types import AgentType
from langchain.tools import tool
from langchain.chains.llm_math.base import LLMMathChain
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.tools import DuckDuckGoSearchRun
#from langchain.utilities import WikipediaAPIWrapper, 
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from youtube_transcript_api import YouTubeTranscriptApi
import pytesseract, cv2, pandas as pd
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.agents import AgentExecutor, initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import SystemMessage
from langchain.memory import ConversationBufferWindowMemory
import os


from huggingface_hub import InferenceClient
from langchain_huggingface import ChatHuggingFace
'''

# Updated imports (fixing deprecated ones)
from langchain_community.chat_models import ChatHuggingFace
from langchain_google_genai import ChatGoogleGenerativeAI
import gradio as gr
import requests
import inspect
import pandas as pd
from langchain_community.llms import HuggingFaceEndpoint  # Updated import
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.agents import AgentExecutor, initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import SystemMessage
from langchain.memory import ConversationBufferWindowMemory
import os


# 1. Set up Hugging Face API
#os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv('HUGGINGFACEHUB_API_TOKEN')

# 2. Define strict response template
RESPONSE_TEMPLATE = """FINAL ANSWER: {answer}"""

# 3. Custom prompt with formatting rules
SYSTEM_PROMPT = """You are a helpful assistant that answers questions using available tools. 
Response Requirements:
- is exactly: FINAL ANSWER: {answer}
Formatting Rules:
- Numbers: Plain (42) - no commas/units
- Strings: Minimal (Paris) - no articles/abbreviations
- Lists: Comma-separated (5, apple, 10)
- No symbols unless specified
- Digits as words when required"""


# 1. Set up Hugging Face API correctly
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")

# 2. Initialize LLM correctly
llm = HuggingFaceEndpoint(
    repo_id="Qwen/Qwen1.5-7B-Chat",
    temperature=0.1,
    max_new_tokens=256,
    huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN,
)

# Wrap with ChatHuggingFace
chat_model = ChatHuggingFace(llm=llm)


'''
client = InferenceClient(
    model="Qwen/Qwen1.5-7B-Chat",
    token=os.getenv("HUGGINGFACEHUB_API_TOKEN")
)

llm = ChatHuggingFace(llm=client)
'''
'''
llm = ChatHuggingFace(
    repo_id="Qwen/Qwen1.5-7B-Chat",
    temperature=0.1,
    max_new_tokens=256,
    huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
)

'''
# 5. Create prompt template with proper variables
prompt = ChatPromptTemplate.from_messages([
    SystemMessage(content=SYSTEM_PROMPT),
    ("human", "{input}"),
    ("ai", "{agent_scratchpad}")
])


# === TOOLS ===
@tool
def wikipedia_search(query: str) -> str:
    """Search Wikipedia and return summary."""
    return WikipediaAPIWrapper().run(query)

@tool
def web_search(query: str) -> str:
    """Search the web using DuckDuckGo."""
    return DuckDuckGoSearchRun().run(query)

@tool
def youtube_transcript(url: str) -> str:
    """Extract transcript from a YouTube video URL."""
    video_id = url.split("v=")[-1]
    transcript = YouTubeTranscriptApi.get_transcript(video_id)
    return "\n".join([x["text"] for x in transcript])

@tool
def image_ocr(path: str) -> str:
    """Extract text from an image file."""
    img = cv2.imread(path)
    return pytesseract.image_to_string(img)

@tool
def read_excel(path: str) -> str:
    """Read contents of an Excel (.xlsx) file."""
    df = pd.read_excel(path)
    return df.to_string()

@tool
def reverse_text(text: str) -> str:
    """Reverse the text if it looks reversed."""
    reversed_candidate = text[::-1]
    if " " in reversed_candidate:
        return f"Reversed detected. Corrected: {reversed_candidate}"
    return text

@tool
def vector_search(query: str) -> str:
    """Search in example documents using vector similarity."""
    docs = [
        "Machine learning involves training algorithms on data.",
        "Neural networks are a part of deep learning.",
        "Supervised learning uses labeled datasets."
    ]
    embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    vectordb = Chroma.from_texts(docs, embedding=embed)
    results = vectordb.similarity_search(query, k=2)
    return "\n".join([r.page_content for r in results])
'''
@tool
def math_calc(expression: str) -> str:
    """Solve a math expression using LLM."""
    return LLMMathChain(llm=llm).run(expression)
'''
@tool
def math_calc(expression: str) -> str:
    """Evaluate a math expression."""
    return str(eval(expression, {"__builtins__": {}}))
    
@tool
def python_eval(code: str) -> str:
    """Evaluate basic Python code."""
    try:
        return str(eval(code, {"__builtins__": {}}))
    except Exception as e:
        return str(e)

# === AGENT ===
tools = [
    wikipedia_search,  
    web_search,        
    youtube_transcript,  
    image_ocr,         
    read_excel,        
    reverse_text,      
    vector_search,     
    math_calc,         
    python_eval
]

# 7. Initialize agent with updated memory and format enforcement
agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
    memory=ConversationBufferWindowMemory(
        memory_key="chat_history",
        k=3,
        return_messages=True
    ),
    agent_kwargs={
        "system_message": SystemMessage(content=SYSTEM_PROMPT),
        "prompt": prompt
    },
    handle_parsing_errors=True
)

def get_agent_response(question_text):
    
    response = agent.invoke({"input": question_text})
    submitted_answer = response["output"]
        
    # Enforce FINAL ANSWER format if needed
    if not submitted_answer.strip().startswith("FINAL ANSWER:"):
        last_line = submitted_answer.split('\n')[-1]
        submitted_answer = f"FINAL ANSWER: {last_line.strip()}"
            
    return submitted_answer
    

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent.run(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)