File size: 19,407 Bytes
086f199
 
 
 
 
b072581
cb12615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff50d2f
cb12615
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e0438
cb12615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8954f74
 
 
 
 
086f199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5be90c
cb12615
 
f5be90c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import json
import os
import requests
import pandas as pd
from groq import Groq
#import wikipediaapi
import pandas as pd
import pytube
from io import BytesIO

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
client = Groq(api_key=os.getenv("GROQ_API_KEY"))

class MyAgent:
    def __init__(self):
        self.client = Groq()
        self.model = "llama3-70b-8192"
        self.conversation_history = []
        self._add_system_prompt()
        self.wiki_wiki = wikipediaapi.Wikipedia('en')
        
    def _add_system_prompt(self):
        self.conversation_history.append({
            "role": "system",
            "content": (
                "You are a helpful assistant with access to multiple tools.\n"
                "When using tools, respond with JSON containing 'tool_call_id'.\n"
                "Available tools:\n"
                #"- wikipedia_search: Search Wikipedia articles\n"
                "- read_excel: Extract data from Excel files (provide URL)\n"
                "- youtube_info: Get information from YouTube videos\n"
                "- web_search: General web search\n"
                "- calculator: Math calculations\n"
                "Format answers as:\n"
                "- Single number (e.g., 42)\n"
                "- Single lowercase phrase (e.g., 'los angeles')\n"
                "- Comma-separated list (e.g., 'apple,banana,orange')\n"
                "Never include units, commas in numbers, or prefixes like 'Answer:'."
            )
        })

    def _get_tools(self):
        return [

            {
                "type": "function",
                "function": {
                    "name": "read_excel",
                    "description": "Read data from an Excel file available at a URL",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "url": {"type": "string", "description": "URL of the Excel file to read"},
                            "sheet_name": {"type": "string", "description": "Name of the sheet to read (optional)"},
                            "n_rows": {"type": "integer", "description": "Number of rows to return (optional)"}
                        },
                        "required": ["url"]
                    }
                }
            },
            {
                "type": "function",
                "function": {
                    "name": "youtube_info",
                    "description": "Get information from a YouTube video",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "url": {"type": "string", "description": "YouTube video URL"},
                            "info_type": {
                                "type": "string", 
                                "enum": ["metadata", "transcript"],
                                "description": "Type of information to extract: metadata or transcript"
                            }
                        },
                        "required": ["url"]
                    }
                }
            },
            {
                "type": "function",
                "function": {
                    "name": "web_search",
                    "description": "Search the web for current information",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "query": {"type": "string"}
                        },
                        "required": ["query"]
                    }
                }
            },
            {
                "type": "function",
                "function": {
                    "name": "calculator",
                    "description": "Evaluate math expressions",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "expression": {"type": "string"}
                        },
                        "required": ["expression"]
                    }
                }
            }
        ]

    def _execute_tool(self, tool_name, args):
        try:
            if tool_name == "wikipedia_search":
                return self._wikipedia_search(**args)
            elif tool_name == "read_excel":
                return self._read_excel(**args)
            elif tool_name == "youtube_info":
                return self._youtube_info(**args)
            elif tool_name == "web_search":
                return f"Web result for: {args.get('query')}"
            elif tool_name == "calculator":
                try:
                    return str(eval(args.get("expression")))
                except Exception as e:
                    return f"Calculation error: {e}"
            return f"Unknown tool: {tool_name}"
        except Exception as e:
            return f"Tool execution error: {str(e)}"

    def _wikipedia_search(self, query):
        page = self.wiki_wiki.page(query)
        if page.exists():
            summary = page.summary[:1000]  # Limit summary length
            return f"Wikipedia result for '{query}': {summary}"
        return f"No Wikipedia page found for '{query}'"

    def _read_excel(self, url, sheet_name=None, n_rows=None):
        response = requests.get(url)
        response.raise_for_status()
        
        excel_data = BytesIO(response.content)
        if sheet_name:
            df = pd.read_excel(excel_data, sheet_name=sheet_name)
        else:
            df = pd.read_excel(excel_data)
            
        if n_rows:
            df = df.head(n_rows)
        
        # Convert to JSON-friendly format
        return df.to_dict(orient='records')

    def _youtube_info(self, url, info_type="metadata"):
        yt = pytube.YouTube(url)
        
        if info_type == "metadata":
            return {
                "title": yt.title,
                "author": yt.author,
                "length": yt.length,
                "views": yt.views,
                "publish_date": str(yt.publish_date)
            }
        elif info_type == "transcript":
            try:
                caption = yt.captions.get_by_language_code('en')
                return caption.generate_srt_captions()
            except:
                return "No English transcript available"
        return "Invalid info_type specified"
'''
import json
import os
import requests
import pandas as pd
from groq import Groq
import gradio as gr
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
class MyAgent:
    def __init__(self):
        self.client = Groq()
        self.model = "llama3-70b-8192"
        self.conversation_history = []
        self._add_system_prompt()
        
    def _add_system_prompt(self):
        self.conversation_history.append({
            "role": "system",
            "content": (
                "You are a helpful assistant that can use tools when needed.\n"
                "When using tools, respond with JSON containing 'tool_call_id'.\n"
                "Format answers as:\n"
                "- Single number (e.g., 42)\n"
                "- Single lowercase phrase (e.g., 'los angeles')\n"
                "- Comma-separated list (e.g., 'apple,banana,orange')\n"
                "Never include units, commas in numbers, or prefixes like 'Answer:'."
            )
        })

    def _get_tools(self):
        return [
            {
                "type": "function",
                "function": {
                    "name": "web_search",
                    "description": "Search the web for current information",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "query": {"type": "string"}
                        },
                        "required": ["query"]
                    }
                }
            },
            {
                "type": "function",
                "function": {
                    "name": "calculator",
                    "description": "Evaluate math expressions",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "expression": {"type": "string"}
                        },
                        "required": ["expression"]
                    }
                }
            }
        ]

    def _execute_tool(self, tool_name, args):
        if tool_name == "web_search":
            return f"Web result for: {args.get('query')}"
        elif tool_name == "calculator":
            try:
                return str(eval(args.get("expression")))
            except Exception as e:
                return f"Calculation error: {e}"
        return f"Unknown tool: {tool_name}"

    def add_message(self, role, content):
        if role == "tool":
            if not isinstance(content, dict) or "tool_call_id" not in content:
                raise ValueError("Tool messages require tool_call_id")
            self.conversation_history.append({
                "role": "tool",
                "content": content.get("content", ""),
                "tool_call_id": content["tool_call_id"],
                "name": content.get("name", "")
            })
        else:
            self.conversation_history.append({"role": role, "content": content})

    def get_response(self, user_message: str) -> str:
        self.add_message("user", user_message)

        try:
            response = self.client.chat.completions.create(
                model=self.model,
                messages=self.conversation_history,
                tools=self._get_tools()
            )

            message = response.choices[0].message
            
            # Handle tool calls
            if hasattr(message, 'tool_calls') and message.tool_calls:
                tool_call = message.tool_calls[0]  # Take first tool call
                tool_name = tool_call.function.name
                args = json.loads(tool_call.function.arguments)
                
                # Execute tool and add response with tool_call_id
                result = self._execute_tool(tool_name, args)
                self.add_message("tool", {
                    "tool_call_id": tool_call.id,
                    "name": tool_name,
                    "content": result
                })
                return result

            # Handle normal response
            assistant_reply = message.content.strip()
            self.add_message("assistant", assistant_reply)
            return assistant_reply

        except Exception as e:
            error_msg = f"Error: {str(e)}"
            self.add_message("system", error_msg)
            return error_msg
'''


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        
        # Create agent
        #agent = CodeAgent(client=client,model="llama-3.3-70b-versatile",system_prompt="You are a helpful AI assistant with access to tools.")
        agent = MyAgent()
        # Add tools
        #tools = [wikipedia_search,web_search,youtube_transcript,math_calc]
        #agent.add_langchain_tools(tools)
        #agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent.get_response(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)