File size: 20,813 Bytes
556c414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a087e
556c414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45e008
 
 
 
 
3c2ab33
 
 
 
 
 
 
 
 
 
 
 
 
556c414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45e008
556c414
bc6ddbe
 
9f5c425
bc6ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
8e1dea3
bc6ddbe
 
3c2ab33
bc6ddbe
 
 
081d962
 
 
 
 
 
 
 
bc6ddbe
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5c425
3c2ab33
 
bc6ddbe
 
 
9f5c425
bc6ddbe
 
 
 
 
 
1092236
556c414
 
1092236
556c414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45e008
 
 
 
556c414
 
 
 
 
 
 
 
 
fe30145
556c414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c59246b
556c414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f2e075
556c414
 
 
 
 
 
 
 
 
 
2f2e075
556c414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Import of packages
from typing import TypedDict, Annotated, Sequence, Any, Dict, Optional
import operator
import json
import requests
from io import BytesIO
import pandas as pd
from duckduckgo_search import DDGS
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
from langchain_community.document_loaders import YoutubeLoader
from langchain_core.tools import tool
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_groq import ChatGroq
from langgraph.graph import END, StateGraph
import os
from groq import Groq
import gradio as gr

import requests
import json

#configure API and headers of OpenRouter
OR_API_KEY = os.getenv("DS") #os.getenv("OR_API_KEY2")#os.getenv("gemini_api")#
HEADERS = {
    "Authorization": f"Bearer {OR_API_KEY}",
    "Content-Type": "application/json",
    "HTTP-Referer": "<YOUR_SITE_URL>", # Optional. Site URL for rankings on openrouter.ai.
    "X-Title": "<YOUR_SITE_NAME>", # Optional. Site title for rankings on openrouter.ai.
}


'''
# Example usage:
prompt1 = "Hello, what is the cultural capital of morocco?"
print(get_concise_answer(prompt1))

prompt2 = "how many albums does maher zain have?"
print(get_concise_answer(prompt2))
'''

#Configure HF API
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

client = Groq(api_key=os.getenv("GROQ_API_KEY"))

# 1. Define Custom Tools

@tool
def reverse_text(text: str) -> str:
    """Reverses the input text. Example: 'siht' becomes 'this'."""
    return text[::-1]  # Simple Python string reversal
reverse_text.name = "reverse_text"
@tool
def execute_python(code: str) -> str:
    """Safely execute Python code and return the result or error."""
    try:
        # Create a restricted execution environment
        local_env = {}
        exec(code, {"__builtins__": {}}, local_env)
        return str(local_env)
    except Exception as e:
        return f"Execution error: {e}"

execute_python.name = "execute_python"

@tool
def duckduckgo_search(query: str) -> str:
    """Search the web using DuckDuckGo and return the top result."""
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=1))
            if results:
                return f"{results[0]['title']}\n{results[0]['href']}\n{results[0]['body']}"
            else:
                return "No results found."
    except Exception as e:
        return f"Search failed: {e}"

duckduckgo_search.name = "duckduckgo_search"

@tool
def wikipedia_search(query: str) -> str:
    """Search Wikipedia for information about a topic."""
    try:
        wikipedia = WikipediaAPIWrapper()
        return wikipedia.run(query)
    except Exception as e:
        return f"Wikipedia error: {e}"

wikipedia_search.name = "wikipedia_search"

@tool
def read_excel(url: str, sheet_name: str = None, n_rows: int = None) -> str:
    """Read data from an Excel file available at a URL."""
    try:
        response = requests.get(url)
        response.raise_for_status()
        excel_data = BytesIO(response.content)
        df = pd.read_excel(excel_data, sheet_name=sheet_name) if sheet_name else pd.read_excel(excel_data)
        return df.head(n_rows).to_string() if n_rows else df.to_string()
    except Exception as e:
        return f"Failed to read Excel file: {e}"

read_excel.name = "read_excel"

@tool
def youtube_info(url: str, info_type: str = "metadata") -> str:
    """Get information from a YouTube video (metadata or transcript)."""
    try:
        if info_type == "metadata":
            loader = YoutubeLoader.from_youtube_url(url, add_video_info=True)
            return str(loader.load()[0].metadata)
        elif info_type == "transcript":
            loader = YoutubeLoader.from_youtube_url(url)
            return loader.load()[0].page_content
        return "Invalid info_type specified"
    except Exception as e:
        return f"Error loading YouTube content: {e}"

youtube_info.name = "youtube_info"





# 4. Define Tools and Nodes

tools = [duckduckgo_search, wikipedia_search, read_excel, youtube_info, execute_python, reverse_text]

def get_concise_answer_by_groq(
    prompt: str,
    model: str = "llama3-70b-8192", #,"qwen-qwq-32b"
    timeout: int = 1000,
) -> Optional[str]:
    """
    Fetches a concise AI response from Groq API.
    
    Args:
        prompt (str): The user's input/question.
        model (str): The AI model to use (default: mixtral-8x7b-32768).
        timeout (int): Request timeout in seconds (default: 10).
    
    Returns:
        str: The concise AI response, or None if an error occurs.
    """
    sys_message = """You are an AI assistant that answers questions directly and concisely. 
                    -Respond with only the factual answer, no prefixes, explanations, or extra text like " or ' or point .... 
                    -Do not write reflection in the response just one or few words in the answer. 
                    -Do not write for example the surname is Agnew but instead write Agnew directy.
                    -If the user tell you to give the first name, just give it without the last name
                    -Do not write I searched wikipedia ... but write the answer in one or few words.
                    -Do not add separators to the answer.
                    -Answer with complete name of the country. For instance use France instead FRA.
                    -If you detect inverted text (like 'siht si'), automatically reverse it before answering.
                    Examples: 
                      -User: What is 'siht'?
                      -AI: this
                      -User: Who is the CEO of Tesla?
                      -AI: Elon Musk
                      -User: Capital of Japan?
                      -AI: Tokyo
                """
    
    try:
        chat_completion = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": sys_message
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            model="llama3-70b-8192", #"qwen-qwq-32b",#"llama3-70b-8192", # You can choose a different model
            temperature=0, # Lower temperature for more factual answers
            max_tokens=20 # Limit tokens for a concise answer
        )
        # Extract the content from the response
        if chat_completion and chat_completion.choices:
            return chat_completion.choices[0].message.content.strip()
        else:
            return "Could not get a response from the API."
    except Exception as e:
        return f"An error occurred: {e}"


###"google/gemini-2.0-flash-exp:free","deepseek/deepseek-chat-v3-0324:free", "qwen/qwen3-14b:free", "deepseek/deepseek-chat:free"
def get_concise_answer(
    prompt: str,
    model: str = "deepseek/deepseek-chat:free",  
    timeout: int = 1000,
) -> Optional[str]:
    """
    Fetches a concise AI response from OpenRouter API.
    
    Args:
        prompt (str): The user's input/question.
        model (str): The AI model to use (default: deepseek-chat-v3-0324).
        timeout (int): Request timeout in seconds (default: 10).
    
    Returns:
        str: The concise AI response, or None if an error occurs.
    """
    sys_message = """You are an AI assistant that answers questions directly and concisely. 
                    -Respond with only the factual answer, no prefixes, explanations, or extra text. 
                    -Do not write reflection in the response just one or few words in the answer. 
                    -Do not write for example the surname is Agnew but instead write Agnew directy.
                    -Do not write I searched wikipedia ... but write the answer in one or few words.
                    -Do not add separators to the answer.
                    -Answer with complete name of the country. For instance use France instead FRA.
                    -If you detect inverted text (like 'siht si'), automatically reverse it before answering.
                    -Example: 
                      -User: What is 'siht'?
                      -AI: this
                   Examples:
                   - User: Who is the CEO of Tesla?
                   - AI: Elon Musk
                   - User: Capital of Japan?
                   - AI: Tokyo
                """
                        
    try:
        response = requests.post(
            url="https://openrouter.ai/api/v1/chat/completions",
            headers=HEADERS,  # Ensure HEADERS is defined elsewhere
            data=json.dumps({
                "model": model,
                "messages": [
                    {
                        "role": "system",
                        "content": sys_message
                    },
                    {"role": "user", "content": prompt}
                ],
            }),
            timeout=timeout,
        )
        response.raise_for_status()  # Raises HTTPError for bad responses (4xx, 5xx)
        data = response.json()

        # Check if response has the expected structure
        if "choices" not in data or not data["choices"]:
            return None
        
        model_response = data["choices"][0]["message"]["content"]
        return model_response.strip()  # Remove extra whitespace

    except requests.exceptions.RequestException as e:
        print(f"API Request failed: {e}")
        return None
    except (KeyError, json.JSONDecodeError) as e:
        print(f"Failed to parse API response: {e}")
        return None

from typing import TypedDict, Annotated, Sequence, Dict, Any, Union
from langchain_core.messages import HumanMessage, AIMessage

# 1. Update AgentState to use proper message types
class AgentState(TypedDict):
    messages: Annotated[Sequence[Union[HumanMessage, AIMessage]], operator.add]
    sender: str

# 2. Fix agent_node to handle HumanMessage objects
def agent_node(state: AgentState):
    # Extract the last message content
    messages = state["messages"]
    last_message = messages[-1].content if messages else ""
    
    # Get concise response
    model_response = get_concise_answer_by_groq(last_message)
    
    # Return AIMessage in expected format
    return {"messages": [AIMessage(content=model_response or "No response received")]}

# 3. Fix tool_node to properly handle tool calls
def tool_node(state: AgentState):
    messages = state["messages"]
    last_msg = messages[-1]
    
    # Check if it's an AIMessage with tool calls
    if not hasattr(last_msg, 'tool_calls') or not last_msg.tool_calls:
        return {"messages": [AIMessage(content="No tool calls found")]}
    
    # Process the first tool call
    tool_call = last_msg.tool_calls[0]
    tool_name = tool_call["name"]
    tool_input = json.loads(tool_call["args"])
    
    # Find and invoke the tool
    selected_tool = next(t for t in tools if t.name == tool_name)
    output = selected_tool.invoke(tool_input)
    
    # Return as HumanMessage with tool name
    return {"messages": [HumanMessage(content=output, name=tool_name)]}

# 4. Update the workflow construction
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent_node)
workflow.add_node("tools", tool_node)

workflow.add_conditional_edges(
    "agent",
    lambda x: hasattr(x["messages"][-1], 'tool_calls') and x["messages"][-1].tool_calls,
    {True: "tools", False: END}
)
workflow.add_edge("tools", "agent")

# Set entry point for the graph
workflow.set_entry_point("agent")

# Compile the graph
agent = workflow.compile()
'''
# 6. Run Function (Example usage)
if __name__ == "__main__":
    # Example of using the agent
    # Example invocation
    response = agent.invoke({
    "messages": [HumanMessage(content="Who is the CEO of Tesla?")],
    "sender": "user"
      })
    print(response["messages"][-1].content)  # Should print "Elon Musk"

'''

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    '''
    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        
        # Create agent
        #agent = CodeAgent(client=client,model="llama-3.3-70b-versatile",system_prompt="You are a helpful AI assistant with access to tools.")
        agent = MyAgent()
        # Add tools
        #tools = [wikipedia_search,web_search,youtube_transcript,math_calc]
        #agent.add_langchain_tools(tools)
        #agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    '''
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            agent_response = agent.invoke({
                        "messages": [HumanMessage(content=question_text)],
                        "sender": "user"
                                    })
            submitted_answer = agent_response["messages"][-1].content
            #submitted_answer = get_concise_answer(question_text)
            #submitted_answer = agent(question_text)
            #submitted_answer = run_groq_agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)