Spaces:
Runtime error
Runtime error
File size: 54,646 Bytes
bc4dcba e51f443 bc4dcba c7a23ae bc4dcba 534b6f7 4c607ac 534b6f7 02eae13 bc4dcba 412d683 bc4dcba 6ff6859 bc4dcba e51f443 bc4dcba e51f443 bc4dcba e51f443 bc4dcba 81302bc bc4dcba f931d48 bc4dcba 9ffeffb bc4dcba 81302bc bc4dcba 6c06eaa bc4dcba 6c06eaa 9ffeffb 6c06eaa bc4dcba 6c06eaa bc4dcba 6c06eaa 81302bc 6c06eaa 81302bc 6c06eaa 81302bc 6c06eaa bc4dcba 534b6f7 6c06eaa bc4dcba 6c06eaa e51f443 6c06eaa bc4dcba 534b6f7 bc4dcba 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb e1d0521 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 4c607ac 9ffeffb 5e492a8 9ffeffb 5e492a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 |
from openai import OpenAI
import streamlit as st
import streamlit.components.v1 as components
import datetime, time
from dataclasses import dataclass
import math
import base64
## Firestore ??
import os
# import sys
# import inspect
# currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
# parentdir = os.path.dirname(currentdir)
# sys.path.append(parentdir)
import openai
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
import tiktoken
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from operator import itemgetter
from langchain.schema import StrOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, RunnableParallel
from langchain_core.runnables import chain
import langchain_community.embeddings.huggingface
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings, HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import LLMChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory #, ConversationBufferMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory
import os, dotenv
from dotenv import load_dotenv
load_dotenv()
import firebase_admin, json
from firebase_admin import credentials, storage, firestore
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import networkx as nx
if not os.path.isdir("./.streamlit"):
os.mkdir("./.streamlit")
print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
with open("./.streamlit/secrets.toml", "w") as f:
f.write(os.environ.get("STREAMLIT_SECRETS"))
print('made new file')
import os, dotenv
from dotenv import load_dotenv
load_dotenv()
if not os.path.isdir("./.streamlit"):
os.mkdir("./.streamlit")
print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
with open("./.streamlit/secrets.toml", "w") as f:
f.write(os.environ.get("STREAMLIT_SECRETS"))
print('made new file')
import db_firestore as db
## Load from streamlit!!
os.environ["HF_TOKEN"] = os.environ.get("HF_TOKEN") or st.secrets["HF_TOKEN"]
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or st.secrets["OPENAI_API_KEY"]
os.environ["FIREBASE_CREDENTIAL"] = os.environ.get("FIREBASE_CREDENTIAL") or st.secrets["FIREBASE_CREDENTIAL"]
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo-1106"
## Hardcode indexes for now
## TODO: Move indexes to firebase
indexes = """Bleeding
ChestPain
Dysphagia
Headache
ShortnessOfBreath
Vomiting
Weakness
Weakness2""".split("\n")
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings" not in st.session_state:
st.session_state.embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs = model_kwargs,
encode_kwargs = encode_kwargs)
embeddings = st.session_state.embeddings
if "llm" not in st.session_state:
st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
llm = st.session_state.llm
if "llm_i" not in st.session_state:
st.session_state.llm_i = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
llm_i = st.session_state.llm_i
if "llm_gpt4" not in st.session_state:
st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gpt4 = st.session_state.llm_gpt4
if "TEMPLATE" not in st.session_state:
with open('templates/patient.txt', 'r') as file:
TEMPLATE = file.read()
st.session_state.TEMPLATE = TEMPLATE
TEMPLATE = st.session_state.TEMPLATE
prompt = PromptTemplate(
input_variables = ["question", "context"],
template = st.session_state.TEMPLATE
)
def format_docs(docs):
return "\n--------------------\n".join(doc.page_content for doc in docs)
sp_mapper = {"human":"student","ai":"patient", "user":"student","assistant":"patient"}
if "TEMPLATE2" not in st.session_state:
with open('templates/grader.txt', 'r') as file:
TEMPLATE2 = file.read()
st.session_state.TEMPLATE2 = TEMPLATE2
TEMPLATE2 = st.session_state.TEMPLATE2
prompt2 = PromptTemplate(
input_variables = ["question", "context", "history"],
template = st.session_state.TEMPLATE2
)
@chain
def get_patient_chat_history(_):
return st.session_state.get("patient_chat_history")
if not st.session_state.get("scenario_list", None):
st.session_state.scenario_list = indexes
def init_patient_llm():
index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/QA"
if "store" not in st.session_state:
st.session_state.store = db.get_store(index_name, embeddings=embeddings)
if "retriever" not in st.session_state:
st.session_state.retriever = st.session_state.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(
llm=llm, memory_key="chat_history", input_key="question",
k=5, human_prefix="student", ai_prefix="patient",)
if ("chain" not in st.session_state
or
st.session_state.TEMPLATE != TEMPLATE):
st.session_state.chain = (
RunnableParallel({
"context": st.session_state.retriever | format_docs,
"question": RunnablePassthrough()
}) |
LLMChain(llm=llm, prompt=prompt, memory=st.session_state.memory, verbose=False)
)
# def init_grader_llm():
login_info = {
"bob":"builder",
"student1": "password",
"admin":"admin"
}
def set_username(x):
st.session_state.username = x
def validate_username(username, password):
if login_info.get(username) == password:
set_username(username)
else:
st.warning("Wrong username or password")
return None
if not st.session_state.get("username"):
## ask to login
st.title("Login")
username = st.text_input("Username:")
password = st.text_input("Password:", type="password")
login_button = st.button("Login", on_click=validate_username, args=[username, password])
ll, rr = st.columns(2)
## TODO: Sync login info usernames to firebase, and remove this portion
ll.header("Admin Login")
ll.write("Username: admin")
ll.write("Password: admin")
rr.header("Student Login")
rr.write("Username: student1")
rr.write("Password: password")
else:
if True: ## Says hello and logout
col_1, col_2 = st.columns([1,3])
col_2.title(f"Hello there, {st.session_state.username}")
# Display logout button
if col_1.button('Logout'):
# Remove username from session state
del st.session_state.username
# Rerun the app to go back to the login view
st.rerun()
scenario_tab, dashboard_tab, generate_tab = st.tabs(["Training", "Dashboard", "Generate Scenario"])
class ScenarioTabIndex:
SELECT_SCENARIO = 0
PATIENT_LLM = 1
GRADER_LLM = 2
def set_scenario_tab_index(x):
st.session_state.scenario_tab_index=x
return None
def go_to_patient_llm():
selected_scenario = st.session_state.get('selected_scenario')
if selected_scenario is None or selected_scenario < 0:
st.warning("Please select a scenario!")
else:
st.session_state.start_time = datetime.datetime.utcnow()
states = ["store", "store2","retriever","retriever2","chain","chain2"]
for state_to_del in states:
if state_to_del in st.session_state:
del st.session_state[state_to_del]
init_patient_llm()
set_scenario_tab_index(ScenarioTabIndex.PATIENT_LLM)
if not st.session_state.get("scenario_tab_index"):
set_scenario_tab_index(ScenarioTabIndex.SELECT_SCENARIO)
with scenario_tab:
##
if True:
## Check in select scenario
if st.session_state.scenario_tab_index == ScenarioTabIndex.SELECT_SCENARIO:
def change_scenario(scenario_index):
st.session_state.selected_scenario = scenario_index
if st.session_state.get("selected_scenario", None) is None:
st.session_state.selected_scenario = -1
total_cols = 3
rows = list()
# for _ in range(0, number_of_indexes, total_cols):
# rows.extend(st.columns(total_cols))
st.header(f"Selected Scenario: {st.session_state.scenario_list[st.session_state.selected_scenario] if st.session_state.selected_scenario>=0 else 'None'}")
#st.button("Generate a new scenario")
for i, scenario in enumerate(st.session_state.scenario_list):
if i % total_cols == 0:
rows.extend(st.columns(total_cols))
curr_col = rows[(-total_cols + i % total_cols)]
tile = curr_col.container(height=120)
## TODO: Implement highlight box if index is selected
# if st.session_state.selected_scenario == i:
# tile.markdown("<style>background: pink !important;</style>", unsafe_allow_html=True)
tile.write(":balloon:")
tile.button(label=scenario, on_click=change_scenario, args=[i])
select_scenario_btn = st.button("Select Scenario", on_click=go_to_patient_llm, args=[])
elif st.session_state.scenario_tab_index == ScenarioTabIndex.PATIENT_LLM:
st.header("Patient info")
## TODO: Put the patient's info here, from SCENARIO
# st.write("Pull the info here!!!")
col1, col2, col3 = st.columns([1,3,1])
with col1:
back_to_scenario_btn = st.button("Back to selection", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])
# with col3:
# start_timer_button = st.button("START")
with col2:
TIME_LIMIT = 60*10 ## to change to 10 minutes
time.sleep(1)
# if start_timer_button:
# st.session_state.start_time = datetime.datetime.now()
# st.session_state.time = -1 if not st.session_state.get('time') else st.session_state.get('time')
st.session_state.start_time = False if not st.session_state.get('start_time') else st.session_state.start_time
from streamlit.components.v1 import html
html(f"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans&display=swap');
@import url('https://fonts.googleapis.com/css2?family=VT323&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Monofett&display=swap');
</style>
<style>
html {{
font-family: 'Pixelify Sans', monospace, serif;
font-family: 'VT323', monospace, sans-serif;
font-family: 'Monofett', monospace, sans-serif;
font-family: 'Times New Roman', sans-serif;
background-color: #0E1117 !important;
color: RGB(250,250,250);
// border-radius: 25%;
// border: 1px solid #0E1117;
}}
html, body {{
// background-color: transparent !important;
// margin: 10px;
// border: 1px solid pink;
text-align: center;
}}
body {{
background-color: #0E1117;
// margin: 10px;
// border: 1px solid pink;
}}
body #ttime {{
font-weight: bold;
font-family: 'VT323', monospace, sans-serif;
// font-family: 'Pixelify Sans', monospace, serif;
}}
</style>
<div>
<h1>Time left</h1>
<h1 id="ttime"> </h1>
</div>
<script>
var x = setInterval(function() {{
var start_time_str = "{st.session_state.start_time}";
var start_date = new Date(start_time_str);
// var curr_date = new Date();
var utc_date_str = new Date().toUTCString().slice(0, -4);
var curr_date = new Date(utc_date_str);
// console.log(utc_date_str);
// console.log("curr date", curr_date);
// console.log("start date", start_date);
var time_difference = curr_date - start_date;
var time_diff_secs = Math.floor(time_difference / 1000);
var time_left = {TIME_LIMIT} - time_diff_secs;
var mins = Math.floor(time_left / 60);
var secs = time_left % 60;
var fmins = mins.toString().padStart(2, '0');
var fsecs = secs.toString().padStart(2, '0');
console.log("run");
if (start_time_str == "False") {{
document.getElementById("ttime").innerHTML = 'Press "Start" to start!';
clearInterval(x);
}}
else if (time_left <= 0) {{
document.getElementById("ttime").innerHTML = "Time's Up!!!";
clearInterval(x);
}}
else {{
document.getElementById("ttime").innerHTML = `${{fmins}}:${{fsecs}}`;
}}
}}, 999)
</script>
""",
)
with open("./public/chars/Female_talk.gif", "rb") as f:
contents = f.read()
student_url = base64.b64encode(contents).decode("utf-8")
with open("./public/chars/Male_talk.gif", "rb") as f:
contents = f.read()
patient_url = base64.b64encode(contents).decode("utf-8")
interactive_container = st.container()
user_input_col ,r = st.columns([4,1])
def to_grader_llm():
if "chain2" in st.session_state:
del st.session_state.chain2
"""
init_grader_llm()
"""
st.session_state["patient_chat_history"] = "History\n" + '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in st.session_state.memory.chat_memory.messages])
## Grader
index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/Rubric"
## Reset time
st.session_state.start_time = False
if "store2" not in st.session_state:
st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
if "retriever2" not in st.session_state:
st.session_state.retriever2 = st.session_state.store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
## Re-init history
st.session_state["patient_chat_history"] = "History\n" + '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in st.session_state.memory.chat_memory.messages])
if ("chain2" not in st.session_state
or
st.session_state.TEMPLATE2 != TEMPLATE2):
st.session_state.chain2 = (
RunnableParallel({
"context": st.session_state.retriever2 | format_docs,
# "history": RunnableLambda(lambda _: "History\n" + '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in st.session_state.memory.chat_memory.messages])),
"history": (get_patient_chat_history),
"question": RunnablePassthrough(),
}) |
# LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
| {
"json": itemgetter("text"),
"text": (
LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["text"],
template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
verbose=False)
)
}
)
set_scenario_tab_index(ScenarioTabIndex.GRADER_LLM)
with r:
to_grader_btn = st.button("To Grader", on_click=to_grader_llm)
with user_input_col:
user_inputs = st.text_input("", placeholder="Chat with the patient here!", key="user_inputs")
if user_inputs:
response = st.session_state.chain.invoke(user_inputs).get("text")
st.session_state.patient_response = response
with interactive_container:
html(f"""
<style>
body {{
font-family: 'VT323', monospace, sans-serif;
}}
.conversation-container {{
display: grid;
grid-template-columns: 1fr 1fr;
grid-template-rows: 1fr 1fr;
gap: 10px;
width: calc(100% - 20px);
height: calc(100% - 20px);
background-color: #add8e6; /* Soothing blue background */
padding: 10px;
}}
.doctor-image {{
grid-column: 1;
grid-row: 2;
display: flex;
justify-content: center;
align-items: center;
}}
.patient-image {{
grid-column: 2;
grid-row: 1;
display: flex;
justify-content: center;
align-items: center;
}}
.doctor-input {{
grid-column: 2;
grid-row: 2;
display: flex;
justify-content: center;
align-items: center;
}}
.patient-input {{
grid-column: 1;
grid-row: 1;
display: flex;
justify-content: center;
align-items: center;
}}
img {{
max-width: 100%;
height: auto;
border-radius: 8px; /* Rounded corners for the images */
}}
input[type="text"] {{
width: 90%;
padding: 10px;
margin: 10px;
border: none;
border-radius: 5px;
}}
</style>
</head>
<body>
<div class="conversation-container">
<div class="doctor-image">
<img src="data:image/png;base64,{student_url}" alt="Doctor" />
</div>
<div class="patient-image">
<img src="data:image/gif;base64,{patient_url}" alt="Patient" />
</div>
<div class="doctor-input">
<span id="doctor_message">You: {st.session_state.get('user_inputs') or ''}</span>
</div>
<div class="patient-input">
<span id="patient_message">{'Patient: '+st.session_state.get('patient_response') if st.session_state.get('patient_response') else '...'}</span>
</div>
</div>
</body>
</html>
""", height=500)
elif st.session_state.scenario_tab_index == ScenarioTabIndex.GRADER_LLM:
st.session_state.grader_output = "" if not st.session_state.get("grader_output") else st.session_state.grader_output
def get_grades():
st.session_state["patient_chat_history"] = "History\n" + '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in st.session_state.get("memory").chat_memory.messages])
txt = f"""
<summary>
{st.session_state.diagnosis}
</summary>
<differential-1>
{st.session_state.differential_1}
</differential-1>
<differential-2>
{st.session_state.differential_2}
</differential-2>
<differential-3>
{st.session_state.differential_3}
</differential-3>
"""
response = st.session_state.chain2.invoke(txt)
st.session_state.grader_output = response
st.session_state.has_llm_output = bool(st.session_state.get("grader_output"))
## TODO: False for now, need check llm output!
with st.expander("Your Diagnosis and Differentials", expanded=not st.session_state.has_llm_output):
st.session_state.diagnosis = st.text_area("Input your case summary and **main** diagnosis:", placeholder="This is a young gentleman with significant family history of stroke, and medical history of poorly-controlled hypertension. He presents with acute onset of bitemporal headache associated with dysarthria and meningism symptoms. Important negatives include the absence of focal neurological deficits, ataxia, and recent trauma.")
st.divider()
st.session_state.differential_1 = st.text_input("Differential 1")
st.session_state.differential_2 = st.text_input("Differential 2")
st.session_state.differential_3 = st.text_input("Differential 3")
with st.columns(6)[5]:
send_for_grading = st.button("Get grades!", on_click=get_grades)
with st.expander("Your grade", expanded=st.session_state.has_llm_output):
if st.session_state.grader_output:
st.write(st.session_state.grader_output.get("text").get("text"))
# back_btn = st.button("back to LLM?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.PATIENT_LLM])
back_btn = st.button("New Scenario?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])
else:
pass
with dashboard_tab:
cred = db.cred
# cred = credentials.Certificate(json.loads(os.environ.get("FIREBASE_CREDENTIAL")))
# Initialize Firebase (if not already initialized)
if not firebase_admin._apps:
firebase_admin.initialize_app(cred, {'storageBucket': 'healthhack-store.appspot.com'})
#firebase_admin.initialize_app(cred,{'storageBucket': 'healthhack-store.appspot.com'}) # connecting to firebase
db_client = firestore.client()
docs = db_client.collection("clinical_scores").stream()
# Create a list of dictionaries from the documents
data = []
for doc in docs:
doc_dict = doc.to_dict()
doc_dict['document_id'] = doc.id # In case you need the document ID later
data.append(doc_dict)
# Create a DataFrame
df = pd.DataFrame(data)
username = st.session_state.get("username")
st.title("Dashboard")
# Convert date from string to datetime if it's not already in datetime format
df['date'] = pd.to_datetime(df['date'], errors='coerce')
# Streamlit page configuration
#st.set_page_config(page_title="Interactive Data Dashboard", layout="wide")
# Use df_selection for filtering data based on authenticated user
if username != 'admin':
df_selection = df[df['name'] == username]
else:
df_selection = df # Admin sees all data
# Chart Title: Student Performance Dashboard
st.title(":bar_chart: Student Performance Dashboard")
st.markdown("##")
# Chart 1: Total attempts
if df_selection.empty:
st.error("No data available to display.")
else:
# Total attempts by name (filtered)
total_attempts_by_name = df_selection.groupby("name")['date'].count().reset_index()
total_attempts_by_name.columns = ['name', 'total_attempts']
# For a single point or multiple points, use a scatter plot
fig_total_attempts = px.scatter(
total_attempts_by_name,
x="name",
y="total_attempts",
title="<b>Total Attempts</b>",
size='total_attempts', # Adjust the size of points
color_discrete_sequence=["#0083B8"] * len(total_attempts_by_name),
template="plotly_white",
text='total_attempts' # Display total_attempts as text labels
)
# Add text annotation for each point
for line in range(0, total_attempts_by_name.shape[0]):
fig_total_attempts.add_annotation(
text=str(total_attempts_by_name['total_attempts'].iloc[line]),
x=total_attempts_by_name['name'].iloc[line],
y=total_attempts_by_name['total_attempts'].iloc[line],
showarrow=True,
font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center",
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="#636363",
ax=20,
ay=-30,
bordercolor="#c7c7c7",
borderwidth=2,
borderpad=4,
bgcolor="#ff7f0e",
opacity=0.8
)
# Update traces for styling
fig_total_attempts.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the scatter plot in Streamlit
st.plotly_chart(fig_total_attempts, use_container_width=True)
# Chart 2 (students only): Personal scores over time
if username != 'admin':
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
#fig = px.bar(df_selection, x='date', y='global_score', title='Your scores!')
if len(df_selection) > 1:
# # If more than one point, use a bar chart
# fig = px.bar(df_selection, x='date', y='global_score', title='Global Score Over Time')
# # fig.update_yaxes(
# # tickmode='array',
# # tickvals=[1, 2, 3, 4, 5], # Reverse the order of tickvals
# # ticktext=['A', 'B','C','D','E'] # Reverse the order of ticktext
# # )
# Mapping dictionary
grade_to_score = {'A': 100, 'B': 80, 'C': 60, 'D': 40, 'E': 20}
# Apply mapping to convert letter grades to numerical scores
df_selection['numeric_score'] = df_selection['global_score'].map(grade_to_score)
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
# Check if there's more than one point in the DataFrame
if len(df_selection) > 1:
# Create a bar chart using Plotly Express
fig = px.bar(df_selection, x='date', y='numeric_score', title='Your scores over time')
else:
# Create a bar chart with just one point
fig = px.bar(df_selection, x='date', y='numeric_score', title='Global Score')
# Manually set the y-axis ticks and labels
fig.update_yaxes(
tickmode='array',
tickvals=list(grade_to_score.values()), # Positions for the ticks
ticktext=list(grade_to_score.keys()), # Text labels for the ticks
range=[0, 120] # Extend the range a bit beyond 100 to accommodate 'A'
)
# # Use st.plotly_chart to display the chart in Streamlit
# st.plotly_chart(fig, use_container_width=True)
else:
# For a single point, use a scatter plot
fig = px.scatter(df_selection, x='date', y='global_score', title='Global Score',
text='global_score', size_max=60)
# Add text annotation
for line in range(0,df_selection.shape[0]):
fig.add_annotation(text=df_selection['global_score'].iloc[line],
x=df_selection['date'].iloc[line], y=df_selection['global_score'].iloc[line],
showarrow=True, font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#636363",
ax=20, ay=-30, bordercolor="#c7c7c7", borderwidth=2, borderpad=4, bgcolor="#ff7f0e",
opacity=0.8)
fig.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the chart in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Show students their scores over time
st.dataframe(df_selection[['date', 'global_score', 'name']])
# Chart 3 (admin only): Global score chart
# Define the order of categories explicitly
order_of_categories = ['A', 'B', 'C', 'D', 'E']
# Convert global_score to a categorical type with the specified order
df_selection['global_score'] = pd.Categorical(df_selection['global_score'], categories=order_of_categories, ordered=True)
# Plot the histogram
fig_score_distribution = px.histogram(
df_selection,
x="global_score",
title="<b>Global Score Distribution</b>",
color_discrete_sequence=["#33CFA5"],
category_orders={"global_score": ["A", "B", "C", "D", "E"]}
)
if username == 'admin':
st.plotly_chart(fig_score_distribution, use_container_width=True)
# Chart 4 (admin only): Students with <5 attempts (filtered)
if username == 'admin':
students_with_less_than_5_attempts = total_attempts_by_name[total_attempts_by_name['total_attempts'] < 5]
fig_less_than_5_attempts = px.bar(
students_with_less_than_5_attempts,
x="name",
y="total_attempts",
title="<b>Students with <5 Attempts</b>",
color_discrete_sequence=["#D62728"] * len(students_with_less_than_5_attempts),
template="plotly_white",
)
if username == 'admin':
st.plotly_chart(fig_less_than_5_attempts, use_container_width=True)
# Selection of a student for detailed view (<5 attempts) - based on filtered data
if username == 'admin':
selected_student_less_than_5 = st.selectbox("Select a student with less than 5 attempts to view details:", students_with_less_than_5_attempts['name'])
if selected_student_less_than_5:
st.write(df_selection[df_selection['name'] == selected_student_less_than_5])
# Chart 5 (admin only): Students with at least one global score of 'C', 'D', 'E' (filtered)
if username == 'admin':
students_with_cde = df_selection[df_selection['global_score'].isin(['C', 'D', 'E'])].groupby("name")['date'].count().reset_index()
students_with_cde.columns = ['name', 'total_attempts']
fig_students_with_cde = px.bar(
students_with_cde,
x="name",
y="total_attempts",
title="<b>Students with at least one global score of 'C', 'D', 'E'</b>",
color_discrete_sequence=["#FF7F0E"] * len(students_with_cde),
template="plotly_white",
)
st.plotly_chart(fig_students_with_cde, use_container_width=True)
# Selection of a student for detailed view (score of 'C', 'D', 'E') - based on filtered data
if username == 'admin':
selected_student_cde = st.selectbox("Select a student with at least one score of 'C', 'D', 'E' to view details:", students_with_cde['name'])
if selected_student_cde:
st.write(df_selection[df_selection['name'] == selected_student_cde])
# Chart 7 (all): Radar Chart
# Mapping grades to numeric values
grade_to_numeric = {'A': 90, 'B': 70, 'C': 50, 'D': 30, 'E': 10}
df.replace(grade_to_numeric, inplace=True)
# Calculate average numeric scores for each category
average_scores = df.groupby('name')[['hx_PC_score', 'hx_AS_score', 'hx_others_score', 'differentials_score']].mean().reset_index()
if username == 'admin':
st.title('Average Scores Radar Chart')
else:
st.title('Performance in each segment as compared to your friends!')
# Categories for the radar chart
categories = ['Presenting complaint', 'Associated symptoms', '(Others)', 'Differentials']
st.markdown("""
###
Double click on the names in the legend to include/exclude them from the plot.
""")
# Custom colors for better contrast
colors = ['gold', 'cyan', 'magenta', 'green']
# Plotly Radar Chart
fig = go.Figure()
for index, row in average_scores.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row['hx_PC_score'], row['hx_AS_score'], row['hx_others_score'], row['differentials_score']],
theta=categories,
fill='toself',
name=row['name'],
line=dict(color=colors[index % len(colors)])
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100], # Numeric range
tickvals=[10, 30, 50, 70, 90], # Positions for the grade labels
ticktext=['E', 'D', 'C', 'B', 'A'] # Grade labels
)),
showlegend=True,
height=600, # Set the height of the figure
width=600 # Set the width of the figure
)
# Display the figure in Streamlit
st.plotly_chart(fig, use_container_width=True)
with generate_tab:
st.title("Medical Scenario Generator (for Admins)")
## Hardcode scenarios for now,
indexes_gen = """
aortic dissection
anemia
cystitis
pneumonia
""".split("\n")
if "selected_index_gen" not in st.session_state:
st.session_state.selected_index_gen = 0
if "search_selectbox_gen" not in st.session_state:
st.session_state.search_selectbox_gen = " "
# st.session_state.index_selectbox_gen = "Headache"
if "search_freetext" not in st.session_state:
st.session_state.search_freetext = " "
# st.session_state.index_selectbox = "Headache"
#index_selectbox = st_tags(
# label='What medical condition would you like to generate a scenario for?',
# text='Input here ...',
# suggestions=indexes_gen,
# value = ' ',
# maxtags = 1,
# key='0')
st.write('What medical condition would you like to generate a scenario for?')
search_freetext = st.text_input("Type your own", value = " ")
if search_freetext != st.session_state.search_freetext:
st.session_state.search_freetext = search_freetext
#hard0, free0 = st.columns(2)
#search_selectbox = hard0.selectbox(
# 'Choose one OR Type on the right',
# indexes, index=0)
#search_freetext = free0.text_input("Type your own")
#
#if search_selectbox != indexes[st.session_state.selected_index]:
# st.session_state.selected_index = indexes.index(search_selectbox)
# st.session_state.search_selectbox = search_selectbox
if "openai_model_gen" not in st.session_state:
st.session_state["openai_model_gen"] = "gpt-3.5-turbo"
model_name = "pritamdeka/S-PubMedBert-MS-MARCO"
model_kwargs = {"device": "cpu"}
# model_kwargs = {"device": "cuda"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings_gen" not in st.session_state:
st.session_state.embeddings_gen = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs = model_kwargs,
encode_kwargs = encode_kwargs)
embeddings_gen = st.session_state.embeddings_gen
if "llm_gen" not in st.session_state:
st.session_state.llm_gen = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
#if "llm" not in st.session_state:
# st.session_state.llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
#llm = st.session_state.llm
#if "llm" not in st.session_state:
# st.session_state.llm = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gen = st.session_state.llm_gen
## ------------------------------------------------------------------------------------------------
## Generator part
index_name_gen = f"indexes/faiss_index_large_v2"
if "store_gen" not in st.session_state:
#st.session_state.store_gen = FAISS.load_local(index_name_gen, embeddings_gen)
st.session_state.store_gen = db.get_store(index_name_gen, embeddings=embeddings_gen)
store_gen = st.session_state.store_gen
def topk(searchKW):
search_r = st.session_state.store_gen.similarity_search(searchKW, k=5)
return [x.page_content for x in search_r]
if 'searchbtn_clicked' not in st.session_state:
st.session_state['searchbtn_clicked'] = False
if 'selected_option' not in st.session_state:
st.session_state['selected_option'] = ""
def search_callback():
st.session_state['searchbtn_clicked'] = True
if st.button('search', on_click=search_callback) or st.session_state['searchbtn_clicked'] or st.session_state.search_freetext != ' ':
def searchInner(searchOptions):
if len(searchOptions)>0:
st.markdown('---')
col1, col2 = st.columns(2)
selected_options = col1.multiselect(
'Choose the most relevant condition:',
searchOptions, max_selections = 1)
if len(selected_options)>0:
col2.write(selected_options[0])
st.session_state['selected_option'] = selected_options[0]
else:
col2.write('')
else:
st.markdown('---')
st.write("No results found. Perhaps try another condition? Some examples that work: "+', '.join(indexes_gen))
if search_freetext != " ":
options = topk(search_freetext)
searchInner(options)
else:
options = topk(indexes_gen[st.session_state.selected_index])
searchInner(options)
st.write(st.session_state['selected_option'])
## ------------------------------------------------------------------------------------------------
## LLM part
kg_name = f"kgstore"
if 'infostorekg' not in st.session_state:
st.session_state.infostorekg = ""
if "dfdisease" not in st.session_state:
st.session_state.dfdisease = db.get_csv(kg_name, isDiseases = True)
if "dffull" not in st.session_state:
st.session_state.dffull = db.get_csv(kg_name, isDiseases = False)
if "datanet" not in st.session_state:
st.session_state.datanet = nx.from_pandas_edgelist(st.session_state.dffull , 'x_id', 'y_id', ['relation'])
datanet = st.session_state.datanet
kgD = st.session_state.dfdisease[['group_id_bert','group_name_bert', 'mondo_definition', 'umls_description','orphanet_definition']].astype(str).values.tolist()
kgD2 = [' '.join([x[1]+'.']+list(set([y for y in x[2:] if y != 'nan']))) for x in kgD]
if 'genbtn_clicked' not in st.session_state:
st.session_state['genbtn_clicked'] = False
if "TEMPLATE_gen" not in st.session_state:
with open('templates/kgen.txt', 'r') as file:
TEMPLATE_gen = file.read()
st.session_state.TEMPLATE_gen = TEMPLATE_gen
### ------------------------------------------------------------------------------------------------
### DEBUGGING CODE
#with st.expander("Patient Prompt"):
# TEMPLATE = st.text_area("Patient Prompt", value=st.session_state.TEMPLATE)
# st.session_state.TEMPLATE= TEMPLATE
### ------------------------------------------------------------------------------------------------
prompt_gen = PromptTemplate(
input_variables = ["infostorekg"],
template = st.session_state.TEMPLATE_gen
)
if 'formautofill' not in st.session_state:
st.session_state['formautofill'] = ""
def gen_callback():
st.session_state['genbtn_clicked'] = True
def kgMatch(nodeName):
newidx = kgD[kgD2.index(nodeName)][0]
df_disease = st.session_state.dfdisease
df_full = st.session_state.dffull
desG = nx.single_source_dijkstra(datanet, newidx, cutoff = 1)
diseaseName = df_disease[df_disease.group_id_bert == newidx]['group_name_bert'].unique().tolist()[0]
phenotypeFilter = df_full[(df_full['x_id'] == newidx)| (df_full['y_id'] == newidx)]
phenotypeList = [x for x in list(set(phenotypeFilter.y_name.unique().tolist()+ phenotypeFilter.x_name.unique().tolist())) if diseaseName not in x ]
return (diseaseName, phenotypeList)
def passState(dummy):
if "infostorekg" in st.session_state:
return str(st.session_state.infostorekg)
else:
return dummy
if st.button('Generate scenario', on_click=gen_callback) or st.session_state['genbtn_clicked']:
if len(st.session_state.selected_option)>0:
infoPrompt = kgMatch(st.session_state.selected_option)
st.session_state.infostorekg = str(infoPrompt)
if ("chain_gen" not in st.session_state
or
st.session_state.TEMPLATE_gen != TEMPLATE):
#st.session_state.chain = (
#{
# "infostorekg": passState,
# } |
#LLMChain(llm=llm_gen, prompt=prompt, verbose=False)
st.session_state.chain_gen = LLMChain(llm=llm_gen, prompt=prompt_gen, verbose = False)
chain = st.session_state.chain_gen
st.session_state['formautofill'] = chain.invoke({"infostorekg": st.session_state.infostorekg}).get("text")
else:
st.warning('Please search and select a condition first!')
## ------------------------------------------------------------------------------------------------
## Forms part
conDict = {
}
rubDict = {'complaints': """Grade A: Elicits all of the above points in detail
Grade B: Explores both presenting complaints (fill in) and (others) in almost full detail and rules
out red flags
Grade C: Explores both presenting complaints (fill in) incompletely and looks out for
red flags
Grade D: Explores both presenting complaints incompletely (fill in) but does not rule
out any red flags/ explores one complaint and rules out at least one red flag
Grade E: Only explores one of the two presenting complaints (fill in)""",
'syms': """Grade A: Explores at least (5) differentials in detail including (fill in) and elicits all * (6)
points
Grade B: Explores most (4) of the above systems including (fill in) and elicits all (6) *
points
Grade C: Explores most (4) of the above systems and elicits most (4-6) * points
Grade D: Explores more than half (3) of the above systems and elicits most (4-6) * points
Grade E: Explores only 1-2 of the above systems or asks less than half (1-3) * points""",
'others': """Grade A: Elicits all (4) of the * points and past medical Hx of (fill in)
Grade B: Elicits all (4) of the * points and past medical Hx of (fill in),
but did not go into important details
Grade C: Elicits most (2-3) of the * points and past medical Hx of (fill in) in adequate detail
Grade D: Elicits most (2-3) of the * points and past medical Hx of (fill in)
but not in detail
Grade E: Elicits 0-1 of the * points or did not take past medical Hx of (fill in)(not taking a (specific history: fill in ) history will give the candidate this score for the domain)""",
'findings': """Grade A: Presents all (4) of the * points, has (fill in) as top differentials with justification,
and at least one other differentials with adequate justification
Grade B: Presents most (2-3) of the * points, has (fill in) as top differentials but inadequate
justification
Grade C: Presents most (2-3) of the * points, has either (fill in) as top differential with at least
one other differential
Grade D: Presents most (2-3) of the *points OR only able to have 1 diagnosis without differential diagnosis
Grade E: Presents few (0-1) of * points OR unable to have any diagnosis or differentials"""
}
### ------------------------------------------------------------------------------------------------
### DEBUGGING CODE
#with st.expander("GPTOUTPUT"):
# out = st.text_area(" ", value=st.session_state['formautofill'])
### ------------------------------------------------------------------------------------------------
def splitReply():
gendata = json.loads(st.session_state['formautofill'], strict = False)
conditionsGen = []
def curseDict(possibleDict, defDict):
if type(defDict[possibleDict]) == str:
return '\n' + possibleDict + ': '+ defDict[possibleDict]
elif type(defDict[possibleDict]) == list:
if all(isinstance(item, str) for item in defDict[possibleDict]):
return '\n' + possibleDict + ': '+ '\n '.join(defDict[possibleDict])
else:
returnList = [str(x) for x in defDict[possibleDict]]
return '\n' + possibleDict + ': '+ '\n '.join(returnList)
elif type(defDict[possibleDict]) == dict:
out = possibleDict
for m in defDict[possibleDict]:
out += curseDict(m, defDict[possibleDict])
return out
else:
return possibleDict+'\n'+ str(defDict[possibleDict])
for x in gendata:
if 'patient' in x.lower():
conditionsGen.append(x)
for y in gendata[x]:
conditionsGen[-1] += curseDict(y, gendata[x])
conDict['patients'] = conditionsGen[-1]
elif 'complain' in x.lower() or 'present' in x.lower():
conditionsGen.append(x)
for y in gendata[x]:
conditionsGen[-1] += curseDict(y, gendata[x])
conDict['complaints'] = conditionsGen[-1]
elif 'symptom' in x.lower() or 'associate' in x.lower():
conditionsGen.append(x)
for y in gendata[x]:
conditionsGen[-1] += curseDict(y, gendata[x])
conDict['syms'] = conditionsGen[-1]
elif 'other' in x.lower():
conditionsGen.append(x)
for y in gendata[x]:
conditionsGen[-1] += curseDict(y, gendata[x])
conDict['others'] = conditionsGen[-1]
if 'diagnosis' in x.lower() or 'differential' in x.lower():
conditionsGen.append(x)
for y in gendata[x]:
conditionsGen[-1] += curseDict(y, gendata[x])
conDict['findings'] = conditionsGen[-1]
if len(st.session_state['formautofill'])>0:
with st.form("filled_form"):
st.write("Generated Autofill")
splitReply()
with st.expander("Patient Scenario: Provided to students at the start of the exam"):
patient_val_filled = st.text_area(" ", conDict['patients'], height=400, key="patientscenario")
st.write("Rubrics: Details students are expected to ask about and rubrics details for grading")
with st.expander("History Taking: Presenting Complaints"):
patient_val_filled = st.text_area(" ", conDict['complaints'], height=400, key="complaints1")
complaints_val_filled = st.text_area("Rubrics: Complaints", rubDict['complaints'], height=400, key="complaints2")
with st.expander("History Taking: Associated Symptoms"):
syms_val_filled = st.text_area(" ", conDict['syms'], height=400, key="syms")
syms_rubrics_filled = st.text_area("Rubrics: Symptoms", rubDict['syms'], height=400, key="syms2")
with st.expander("History Taking: Others"):
others_val_filled = st.text_area(" ", conDict['others'], height=400, key="others")
others_rubrics_filled = st.text_area("Rubrics: Others", rubDict['others'], height=400, key="others2")
with st.expander("Presentation of Findings, Diagnosis, and Differentials"):
findings_val_filled = st.text_area(" ", conDict['findings'], height=400, key="findings")
findings_rubrics_filled = st.text_area("Rubrics: Findings and Diagnosis",rubDict['findings'], height=400, key="findings2")
# Every form must have a submit button.
submitted = st.form_submit_button("Submit")
if submitted:
#conDict.send(to firebase, with key) # retrieve from key
st.write("check out your new scenario here! (not implemented yet)")
#loadScenario = st.button("Go to patient simulator (currently not implemented)")
else:
with st.form("empty_form"):
st.write("Blank Form")
with st.expander("Patient Scenario: Provided to students at the start of the exam"):
patient_val_filled = st.text_area(" ", height=400, key="patientscenario_empty")
st.write("Rubrics: Details students are expected to ask about and rubrics details for grading")
with st.expander("History Taking: Presenting Complaints"):
col1_com, col2_com= st.columns(2)
patient_val_filled = col1_com.text_area(" ", height=400, key="complaints_empty")
complaints_val_filled = col2_com.text_area("Rubrics: Complaints", rubDict['complaints'], height=400, key="complaints2_empty")
with st.expander("History Taking: Associated Symptoms"):
syms_val_filled = st.text_area(" ", height=400, key="syms_empty")
syms_rubrics_filled = st.text_area("Rubrics: Symptoms", rubDict['syms'], height=400, key="syms2_empty")
with st.expander("History Taking: Others"):
others_val_filled = st.text_area(" ", height=400, key="others_empty")
others_rubrics_filled = st.text_area("Rubrics: Others", rubDict['others'], height=400, key="others2_empty")
with st.expander("Presentation of Findings, Diagnosis, and Differentials"):
findings_val_filled = st.text_area(" ", height=400, key="findings_empty")
findings_rubrics_filled = st.text_area("Rubrics: Findings and Diagnosis",rubDict['findings'], height=400, key="findings2_empty")
# Every form must have a submit button.
submitted_empty = st.form_submit_button("Submit")
if submitted_empty:
#conDict.send(to firebase, with key) # retrieve from key
st.write("check out your new scenario here! (not implemented yet)")
#loadScenario = st.button("Go to patient simulator (currently not implemented)") |