Spaces:
Runtime error
Runtime error
Pushed Generate tab
Browse files- app_final.py +363 -2
app_final.py
CHANGED
@@ -209,7 +209,7 @@ else:
|
|
209 |
# Rerun the app to go back to the login view
|
210 |
st.rerun()
|
211 |
|
212 |
-
scenario_tab, dashboard_tab = st.tabs(["Training", "Dashboard"])
|
213 |
|
214 |
class ScenarioTabIndex:
|
215 |
SELECT_SCENARIO = 0
|
@@ -251,7 +251,7 @@ else:
|
|
251 |
# rows.extend(st.columns(total_cols))
|
252 |
|
253 |
st.header(f"Selected Scenario: {st.session_state.scenario_list[st.session_state.selected_scenario] if st.session_state.selected_scenario>=0 else 'None'}")
|
254 |
-
st.button("Generate a new scenario")
|
255 |
for i, scenario in enumerate(st.session_state.scenario_list):
|
256 |
if i % total_cols == 0:
|
257 |
rows.extend(st.columns(total_cols))
|
@@ -822,3 +822,364 @@ else:
|
|
822 |
# Display the figure in Streamlit
|
823 |
st.plotly_chart(fig, use_container_width=True)
|
824 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
# Rerun the app to go back to the login view
|
210 |
st.rerun()
|
211 |
|
212 |
+
scenario_tab, dashboard_tab, generate_tab = st.tabs(["Training", "Dashboard", "Generate Scenario"])
|
213 |
|
214 |
class ScenarioTabIndex:
|
215 |
SELECT_SCENARIO = 0
|
|
|
251 |
# rows.extend(st.columns(total_cols))
|
252 |
|
253 |
st.header(f"Selected Scenario: {st.session_state.scenario_list[st.session_state.selected_scenario] if st.session_state.selected_scenario>=0 else 'None'}")
|
254 |
+
#st.button("Generate a new scenario")
|
255 |
for i, scenario in enumerate(st.session_state.scenario_list):
|
256 |
if i % total_cols == 0:
|
257 |
rows.extend(st.columns(total_cols))
|
|
|
822 |
# Display the figure in Streamlit
|
823 |
st.plotly_chart(fig, use_container_width=True)
|
824 |
|
825 |
+
with generate_tab:
|
826 |
+
st.title("Medical Scenario Generator (for Admins)")
|
827 |
+
|
828 |
+
## Hardcode scenarios for now,
|
829 |
+
indexes = """
|
830 |
+
aortic dissection
|
831 |
+
anemia
|
832 |
+
cystitis
|
833 |
+
pneumonia
|
834 |
+
""".split("\n")
|
835 |
+
|
836 |
+
if "selected_index" not in st.session_state:
|
837 |
+
st.session_state.selected_index = 0
|
838 |
+
|
839 |
+
if "search_selectbox" not in st.session_state:
|
840 |
+
st.session_state.search_selectbox = " "
|
841 |
+
# st.session_state.index_selectbox = "Headache"
|
842 |
+
|
843 |
+
if "search_freetext" not in st.session_state:
|
844 |
+
st.session_state.search_freetext = " "
|
845 |
+
# st.session_state.index_selectbox = "Headache"
|
846 |
+
|
847 |
+
#index_selectbox = st_tags(
|
848 |
+
# label='What medical condition would you like to generate a scenario for?',
|
849 |
+
# text='Input here ...',
|
850 |
+
# suggestions=indexes,
|
851 |
+
# value = ' ',
|
852 |
+
# maxtags = 1,
|
853 |
+
# key='0')
|
854 |
+
|
855 |
+
st.write('What medical condition would you like to generate a scenario for?')
|
856 |
+
search_freetext = st.text_input("Type your own", value = " ")
|
857 |
+
if search_freetext != st.session_state.search_freetext:
|
858 |
+
st.session_state.search_freetext = search_freetext
|
859 |
+
|
860 |
+
#hard0, free0 = st.columns(2)
|
861 |
+
#search_selectbox = hard0.selectbox(
|
862 |
+
# 'Choose one OR Type on the right',
|
863 |
+
# indexes, index=0)
|
864 |
+
#search_freetext = free0.text_input("Type your own")
|
865 |
+
#
|
866 |
+
#if search_selectbox != indexes[st.session_state.selected_index]:
|
867 |
+
# st.session_state.selected_index = indexes.index(search_selectbox)
|
868 |
+
# st.session_state.search_selectbox = search_selectbox
|
869 |
+
|
870 |
+
if "openai_model" not in st.session_state:
|
871 |
+
st.session_state["openai_model"] = "gpt-3.5-turbo"
|
872 |
+
|
873 |
+
if "active_chat" not in st.session_state:
|
874 |
+
st.session_state.active_chat = 1
|
875 |
+
|
876 |
+
model_name = "pritamdeka/S-PubMedBert-MS-MARCO"
|
877 |
+
model_kwargs = {"device": "cpu"}
|
878 |
+
# model_kwargs = {"device": "cuda"}
|
879 |
+
encode_kwargs = {"normalize_embeddings": True}
|
880 |
+
|
881 |
+
if "embeddings" not in st.session_state:
|
882 |
+
st.session_state.embeddings = HuggingFaceEmbeddings(
|
883 |
+
model_name=model_name,
|
884 |
+
model_kwargs = model_kwargs,
|
885 |
+
encode_kwargs = encode_kwargs)
|
886 |
+
embeddings = st.session_state.embeddings
|
887 |
+
if "llm" not in st.session_state:
|
888 |
+
st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
|
889 |
+
llm = st.session_state.llm
|
890 |
+
#if "llm" not in st.session_state:
|
891 |
+
# st.session_state.llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
|
892 |
+
#llm = st.session_state.llm
|
893 |
+
#if "llm" not in st.session_state:
|
894 |
+
# st.session_state.llm = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
|
895 |
+
llm = st.session_state.llm
|
896 |
+
|
897 |
+
## ------------------------------------------------------------------------------------------------
|
898 |
+
## Generator part
|
899 |
+
index_name = f"indexes/faiss_index_large_v2"
|
900 |
+
|
901 |
+
if "store" not in st.session_state:
|
902 |
+
#st.session_state.store = FAISS.load_local(index_name, embeddings)
|
903 |
+
st.session_state.store = db.get_store(index_name, embeddings=embeddings)
|
904 |
+
#st.session_state.store.similarity_search('hello')
|
905 |
+
store = st.session_state.store
|
906 |
+
|
907 |
+
def topk(searchKW):
|
908 |
+
search_r = st.session_state.store.similarity_search(searchKW, k=5)
|
909 |
+
return [x.page_content for x in search_r]
|
910 |
+
|
911 |
+
#def onSelectButton(s_index):
|
912 |
+
# topkindexes = topk(s_index) #return top 5 list of similiar diseases
|
913 |
+
# return selected_options
|
914 |
+
|
915 |
+
#selectButton = st.button(on_click = onSelectButton(st.session_state.index_selectbox))
|
916 |
+
#selectButton = st.button("Search")
|
917 |
+
|
918 |
+
if 'searchbtn_clicked' not in st.session_state:
|
919 |
+
st.session_state['searchbtn_clicked'] = False
|
920 |
+
|
921 |
+
if 'selected_option' not in st.session_state:
|
922 |
+
st.session_state['selected_option'] = ""
|
923 |
+
|
924 |
+
def search_callback():
|
925 |
+
st.session_state['searchbtn_clicked'] = True
|
926 |
+
|
927 |
+
|
928 |
+
if st.button('search', on_click=search_callback) or st.session_state['searchbtn_clicked'] or st.session_state.search_freetext != ' ':
|
929 |
+
def searchInner(searchOptions):
|
930 |
+
if len(searchOptions)>0:
|
931 |
+
st.markdown('---')
|
932 |
+
col1, col2 = st.columns(2)
|
933 |
+
selected_options = col1.multiselect(
|
934 |
+
'Choose the most relevant condition:',
|
935 |
+
searchOptions, max_selections = 1)
|
936 |
+
if len(selected_options)>0:
|
937 |
+
col2.write(selected_options[0])
|
938 |
+
st.session_state['selected_option'] = selected_options[0]
|
939 |
+
else:
|
940 |
+
col2.write('')
|
941 |
+
else:
|
942 |
+
st.markdown('---')
|
943 |
+
st.write("No results found. Perhaps try another condition? Some examples that work: "+', '.join(indexes))
|
944 |
+
|
945 |
+
if search_freetext != " ":
|
946 |
+
options = topk(search_freetext)
|
947 |
+
searchInner(options)
|
948 |
+
else:
|
949 |
+
options = topk(indexes[st.session_state.selected_index])
|
950 |
+
searchInner(options)
|
951 |
+
|
952 |
+
st.write(st.session_state['selected_option'])
|
953 |
+
|
954 |
+
## ------------------------------------------------------------------------------------------------
|
955 |
+
## LLM part
|
956 |
+
|
957 |
+
kg_name = f"kgstore"
|
958 |
+
|
959 |
+
if 'infostorekg' not in st.session_state:
|
960 |
+
st.session_state.infostorekg = ""
|
961 |
+
|
962 |
+
if "dfdisease" not in st.session_state:
|
963 |
+
st.session_state.dfdisease = db.get_csv(kg_name, isDiseases = True)
|
964 |
+
if "dffull" not in st.session_state:
|
965 |
+
st.session_state.dffull = db.get_csv(kg_name, isDiseases = False)
|
966 |
+
if "datanet" not in st.session_state:
|
967 |
+
st.session_state.datanet = nx.from_pandas_edgelist(st.session_state.dffull , 'x_id', 'y_id', ['relation'])
|
968 |
+
datanet = st.session_state.datanet
|
969 |
+
kgD = st.session_state.dfdisease[['group_id_bert','group_name_bert', 'mondo_definition', 'umls_description','orphanet_definition']].astype(str).values.tolist()
|
970 |
+
kgD2 = [' '.join([x[1]+'.']+list(set([y for y in x[2:] if y != 'nan']))) for x in kgD]
|
971 |
+
|
972 |
+
if 'genbtn_clicked' not in st.session_state:
|
973 |
+
st.session_state['genbtn_clicked'] = False
|
974 |
+
|
975 |
+
if "TEMPLATE" not in st.session_state:
|
976 |
+
with open('templates/kgen.txt', 'r') as file:
|
977 |
+
TEMPLATE = file.read()
|
978 |
+
st.session_state.TEMPLATE = TEMPLATE
|
979 |
+
|
980 |
+
### ------------------------------------------------------------------------------------------------
|
981 |
+
### DEBUGGING CODE
|
982 |
+
#with st.expander("Patient Prompt"):
|
983 |
+
# TEMPLATE = st.text_area("Patient Prompt", value=st.session_state.TEMPLATE)
|
984 |
+
# st.session_state.TEMPLATE= TEMPLATE
|
985 |
+
### ------------------------------------------------------------------------------------------------
|
986 |
+
|
987 |
+
|
988 |
+
prompt = PromptTemplate(
|
989 |
+
input_variables = ["infostorekg"],
|
990 |
+
template = st.session_state.TEMPLATE
|
991 |
+
)
|
992 |
+
|
993 |
+
if 'formautofill' not in st.session_state:
|
994 |
+
st.session_state['formautofill'] = ""
|
995 |
+
|
996 |
+
def gen_callback():
|
997 |
+
st.session_state['genbtn_clicked'] = True
|
998 |
+
|
999 |
+
def kgMatch(nodeName):
|
1000 |
+
newidx = kgD[kgD2.index(nodeName)][0]
|
1001 |
+
df_disease = st.session_state.dfdisease
|
1002 |
+
df_full = st.session_state.dffull
|
1003 |
+
desG = nx.single_source_dijkstra(datanet, newidx, cutoff = 1)
|
1004 |
+
diseaseName = df_disease[df_disease.group_id_bert == newidx]['group_name_bert'].unique().tolist()[0]
|
1005 |
+
|
1006 |
+
phenotypeFilter = df_full[(df_full['x_id'] == newidx)| (df_full['y_id'] == newidx)]
|
1007 |
+
phenotypeList = [x for x in list(set(phenotypeFilter.y_name.unique().tolist()+ phenotypeFilter.x_name.unique().tolist())) if diseaseName not in x ]
|
1008 |
+
|
1009 |
+
return (diseaseName, phenotypeList)
|
1010 |
+
|
1011 |
+
def passState(dummy):
|
1012 |
+
if "infostorekg" in st.session_state:
|
1013 |
+
return str(st.session_state.infostorekg)
|
1014 |
+
else:
|
1015 |
+
return dummy
|
1016 |
+
|
1017 |
+
if st.button('Generate scenario', on_click=gen_callback) or st.session_state['genbtn_clicked']:
|
1018 |
+
if len(st.session_state.selected_option)>0:
|
1019 |
+
infoPrompt = kgMatch(st.session_state.selected_option)
|
1020 |
+
st.session_state.infostorekg = str(infoPrompt)
|
1021 |
+
|
1022 |
+
if ("chain" not in st.session_state
|
1023 |
+
or
|
1024 |
+
st.session_state.TEMPLATE != TEMPLATE):
|
1025 |
+
#st.session_state.chain = (
|
1026 |
+
#{
|
1027 |
+
# "infostorekg": passState,
|
1028 |
+
# } |
|
1029 |
+
#LLMChain(llm=llm, prompt=prompt, verbose=False)
|
1030 |
+
st.session_state.chain = LLMChain(llm=llm, prompt=prompt, verbose = False)
|
1031 |
+
chain = st.session_state.chain
|
1032 |
+
|
1033 |
+
st.session_state['formautofill'] = chain.invoke({"infostorekg": st.session_state.infostorekg}).get("text")
|
1034 |
+
else:
|
1035 |
+
st.warning('Please search and select a condition first!')
|
1036 |
+
|
1037 |
+
## ------------------------------------------------------------------------------------------------
|
1038 |
+
## Forms part
|
1039 |
+
|
1040 |
+
conDict = {
|
1041 |
+
}
|
1042 |
+
rubDict = {'complaints': """Grade A: Elicits all of the above points in detail
|
1043 |
+
Grade B: Explores both presenting complaints (fill in) and (others) in almost full detail and rules
|
1044 |
+
out red flags
|
1045 |
+
Grade C: Explores both presenting complaints (fill in) incompletely and looks out for
|
1046 |
+
red flags
|
1047 |
+
Grade D: Explores both presenting complaints incompletely (fill in) but does not rule
|
1048 |
+
out any red flags/ explores one complaint and rules out at least one red flag
|
1049 |
+
Grade E: Only explores one of the two presenting complaints (fill in)""",
|
1050 |
+
'syms': """Grade A: Explores at least (5) differentials in detail including (fill in) and elicits all * (6)
|
1051 |
+
points
|
1052 |
+
Grade B: Explores most (4) of the above systems including (fill in) and elicits all (6) *
|
1053 |
+
points
|
1054 |
+
Grade C: Explores most (4) of the above systems and elicits most (4-6) * points
|
1055 |
+
Grade D: Explores more than half (3) of the above systems and elicits most (4-6) * points
|
1056 |
+
Grade E: Explores only 1-2 of the above systems or asks less than half (1-3) * points""",
|
1057 |
+
'others': """Grade A: Elicits all (4) of the * points and past medical Hx of (fill in)
|
1058 |
+
Grade B: Elicits all (4) of the * points and past medical Hx of (fill in),
|
1059 |
+
but did not go into important details
|
1060 |
+
Grade C: Elicits most (2-3) of the * points and past medical Hx of (fill in) in adequate detail
|
1061 |
+
Grade D: Elicits most (2-3) of the * points and past medical Hx of (fill in)
|
1062 |
+
but not in detail
|
1063 |
+
Grade E: Elicits 0-1 of the * points or did not take past medical Hx of (fill in)(not taking a (specific history: fill in ) history will give the candidate this score for the domain)""",
|
1064 |
+
'findings': """Grade A: Presents all (4) of the * points, has (fill in) as top differentials with justification,
|
1065 |
+
and at least one other differentials with adequate justification
|
1066 |
+
Grade B: Presents most (2-3) of the * points, has (fill in) as top differentials but inadequate
|
1067 |
+
justification
|
1068 |
+
Grade C: Presents most (2-3) of the * points, has either (fill in) as top differential with at least
|
1069 |
+
one other differential
|
1070 |
+
Grade D: Presents most (2-3) of the *points OR only able to have 1 diagnosis without differential diagnosis
|
1071 |
+
Grade E: Presents few (0-1) of * points OR unable to have any diagnosis or differentials"""
|
1072 |
+
}
|
1073 |
+
|
1074 |
+
|
1075 |
+
### ------------------------------------------------------------------------------------------------
|
1076 |
+
### DEBUGGING CODE
|
1077 |
+
#with st.expander("GPTOUTPUT"):
|
1078 |
+
# out = st.text_area(" ", value=st.session_state['formautofill'])
|
1079 |
+
### ------------------------------------------------------------------------------------------------
|
1080 |
+
|
1081 |
+
def splitReply():
|
1082 |
+
gendata = json.loads(st.session_state['formautofill'], strict = False)
|
1083 |
+
conditionsGen = []
|
1084 |
+
def curseDict(possibleDict, defDict):
|
1085 |
+
if type(defDict[possibleDict]) == str:
|
1086 |
+
return '\n' + possibleDict + ': '+ defDict[possibleDict]
|
1087 |
+
elif type(defDict[possibleDict]) == list:
|
1088 |
+
if all(isinstance(item, str) for item in defDict[possibleDict]):
|
1089 |
+
return '\n' + possibleDict + ': '+ '\n '.join(defDict[possibleDict])
|
1090 |
+
else:
|
1091 |
+
returnList = [str(x) for x in defDict[possibleDict]]
|
1092 |
+
return '\n' + possibleDict + ': '+ '\n '.join(returnList)
|
1093 |
+
elif type(defDict[possibleDict]) == dict:
|
1094 |
+
out = possibleDict
|
1095 |
+
for m in defDict[possibleDict]:
|
1096 |
+
out += curseDict(m, defDict[possibleDict])
|
1097 |
+
return out
|
1098 |
+
else:
|
1099 |
+
return possibleDict+'\n'+ str(defDict[possibleDict])
|
1100 |
+
|
1101 |
+
for x in gendata:
|
1102 |
+
if 'patient' in x.lower():
|
1103 |
+
conditionsGen.append(x)
|
1104 |
+
for y in gendata[x]:
|
1105 |
+
conditionsGen[-1] += curseDict(y, gendata[x])
|
1106 |
+
conDict['patients'] = conditionsGen[-1]
|
1107 |
+
elif 'complain' in x.lower() or 'present' in x.lower():
|
1108 |
+
conditionsGen.append(x)
|
1109 |
+
for y in gendata[x]:
|
1110 |
+
conditionsGen[-1] += curseDict(y, gendata[x])
|
1111 |
+
conDict['complaints'] = conditionsGen[-1]
|
1112 |
+
|
1113 |
+
elif 'symptom' in x.lower() or 'associate' in x.lower():
|
1114 |
+
conditionsGen.append(x)
|
1115 |
+
for y in gendata[x]:
|
1116 |
+
conditionsGen[-1] += curseDict(y, gendata[x])
|
1117 |
+
conDict['syms'] = conditionsGen[-1]
|
1118 |
+
|
1119 |
+
elif 'other' in x.lower():
|
1120 |
+
conditionsGen.append(x)
|
1121 |
+
for y in gendata[x]:
|
1122 |
+
conditionsGen[-1] += curseDict(y, gendata[x])
|
1123 |
+
conDict['others'] = conditionsGen[-1]
|
1124 |
+
|
1125 |
+
if 'diagnosis' in x.lower() or 'differential' in x.lower():
|
1126 |
+
conditionsGen.append(x)
|
1127 |
+
for y in gendata[x]:
|
1128 |
+
conditionsGen[-1] += curseDict(y, gendata[x])
|
1129 |
+
conDict['findings'] = conditionsGen[-1]
|
1130 |
+
|
1131 |
+
if len(st.session_state['formautofill'])>0:
|
1132 |
+
with st.form("filled_form"):
|
1133 |
+
st.write("Generated Autofill")
|
1134 |
+
|
1135 |
+
splitReply()
|
1136 |
+
with st.expander("Patient Scenario: Provided to students at the start of the exam"):
|
1137 |
+
patient_val_filled = st.text_area(" ", conDict['patients'], height=400, key="patientscenario")
|
1138 |
+
|
1139 |
+
st.write("Rubrics: Details students are expected to ask about and rubrics details for grading")
|
1140 |
+
with st.expander("History Taking: Presenting Complaints"):
|
1141 |
+
patient_val_filled = st.text_area(" ", conDict['complaints'], height=400, key="complaints1")
|
1142 |
+
complaints_val_filled = st.text_area("Rubrics: Complaints", rubDict['complaints'], height=400, key="complaints2")
|
1143 |
+
with st.expander("History Taking: Associated Symptoms"):
|
1144 |
+
syms_val_filled = st.text_area(" ", conDict['syms'], height=400, key="syms")
|
1145 |
+
syms_rubrics_filled = st.text_area("Rubrics: Symptoms", rubDict['syms'], height=400, key="syms2")
|
1146 |
+
with st.expander("History Taking: Others"):
|
1147 |
+
others_val_filled = st.text_area(" ", conDict['others'], height=400, key="others")
|
1148 |
+
others_rubrics_filled = st.text_area("Rubrics: Others", rubDict['others'], height=400, key="others2")
|
1149 |
+
with st.expander("Presentation of Findings, Diagnosis, and Differentials"):
|
1150 |
+
findings_val_filled = st.text_area(" ", conDict['findings'], height=400, key="findings")
|
1151 |
+
findings_rubrics_filled = st.text_area("Rubrics: Findings and Diagnosis",rubDict['findings'], height=400, key="findings2")
|
1152 |
+
|
1153 |
+
# Every form must have a submit button.
|
1154 |
+
submitted = st.form_submit_button("Submit")
|
1155 |
+
if submitted:
|
1156 |
+
#conDict.send(to firebase, with key) # retrieve from key
|
1157 |
+
st.write("check out your new scenario here!")
|
1158 |
+
loadScenario = st.button("Go to patient simulator (currently not implemented)")
|
1159 |
+
else:
|
1160 |
+
with st.form("empty_form"):
|
1161 |
+
st.write("Blank Form")
|
1162 |
+
with st.expander("Patient Scenario: Provided to students at the start of the exam"):
|
1163 |
+
patient_val_filled = st.text_area(" ", height=400, key="patientscenario_empty")
|
1164 |
+
|
1165 |
+
st.write("Rubrics: Details students are expected to ask about and rubrics details for grading")
|
1166 |
+
with st.expander("History Taking: Presenting Complaints"):
|
1167 |
+
col1_com, col2_com= st.columns(2)
|
1168 |
+
patient_val_filled = col1_com.text_area(" ", height=400, key="complaints_empty")
|
1169 |
+
complaints_val_filled = col2_com.text_area("Rubrics: Complaints", rubDict['complaints'], height=400, key="complaints2_empty")
|
1170 |
+
with st.expander("History Taking: Associated Symptoms"):
|
1171 |
+
syms_val_filled = st.text_area(" ", height=400, key="syms_empty")
|
1172 |
+
syms_rubrics_filled = st.text_area("Rubrics: Symptoms", rubDict['syms'], height=400, key="syms2_empty")
|
1173 |
+
with st.expander("History Taking: Others"):
|
1174 |
+
others_val_filled = st.text_area(" ", height=400, key="others_empty")
|
1175 |
+
others_rubrics_filled = st.text_area("Rubrics: Others", rubDict['others'], height=400, key="others2_empty")
|
1176 |
+
with st.expander("Presentation of Findings, Diagnosis, and Differentials"):
|
1177 |
+
findings_val_filled = st.text_area(" ", height=400, key="findings_empty")
|
1178 |
+
findings_rubrics_filled = st.text_area("Rubrics: Findings and Diagnosis",rubDict['findings'], height=400, key="findings2_empty")
|
1179 |
+
|
1180 |
+
# Every form must have a submit button.
|
1181 |
+
submitted_empty = st.form_submit_button("Submit")
|
1182 |
+
if submitted_empty:
|
1183 |
+
#conDict.send(to firebase, with key) # retrieve from key
|
1184 |
+
st.write("check out your new scenario here!")
|
1185 |
+
loadScenario = st.button("Go to patient simulator (currently not implemented)")
|