File size: 38,062 Bytes
8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 213b6d2 1aa70af 8c5bbef a931dc2 8c5bbef 08eb725 8c5bbef 08eb725 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef bd7e032 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 |
import html
import json
import mimetypes
import os
import re
import time
import traceback
from pathlib import Path
from typing import Dict, List
from urllib.parse import quote_plus, urlparse
import chromadb
import chromadb.utils.embedding_functions as embedding_functions
import fitz # PyMuPDF
import pandas as pd
import requests
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from duckduckgo_search import DDGS
from duckduckgo_search.exceptions import (
ConversationLimitException,
DuckDuckGoSearchException,
RatelimitException,
TimeoutException,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
BSHTMLLoader,
JSONLoader,
PyPDFLoader,
TextLoader,
UnstructuredFileLoader,
)
from langchain_community.tools import BraveSearch
from markdownify import markdownify
from ollama import chat
from PIL import Image
from smolagents import Tool, tool
from smolagents.utils import truncate_content
load_dotenv()
class ReadFileContentTool(Tool):
name = "read_file_content"
description = """Reads local files in various formats (text, CSV, Excel, PDF, HTML, etc.) and returns their content as readable text. Automatically detects and processes the appropriate file format."""
inputs = {
"file_path": {
"type": "string",
"description": "The full path to the file from which the content should be read.",
}
}
output_type = "string"
def forward(self, file_path: str) -> str:
if not os.path.exists(file_path):
return f"❌ File does not exist: {file_path}"
ext = os.path.splitext(file_path)[1].lower()
try:
if ext == ".txt":
with open(file_path, "r", encoding="utf-8") as f:
return truncate_content(f.read())
elif ext == ".csv":
df = pd.read_csv(file_path)
return truncate_content(
f"CSV Content:\n{df.to_string(index=False)}\n\nColumn names: {', '.join(df.columns)}"
)
elif ext in [".xlsx", ".xls"]:
df = pd.read_excel(file_path)
return truncate_content(
f"Excel Content:\n{df.to_string(index=False)}\n\nColumn names: {', '.join(df.columns)}"
)
elif ext == ".pdf":
doc = fitz.open(file_path)
text = "".join([page.get_text() for page in doc])
doc.close()
return truncate_content(
text.strip() or "⚠️ PDF contains no readable text."
)
elif ext == ".json":
with open(file_path, "r", encoding="utf-8") as f:
return truncate_content(f.read())
elif ext == ".py":
with open(file_path, "r", encoding="utf-8") as f:
return truncate_content(f.read())
elif ext in [".html", ".htm"]:
with open(file_path, "r", encoding="utf-8") as f:
html = f.read()
try:
markdown = markdownify(html).strip()
markdown = re.sub(r"\n{3,}", "\n\n", markdown)
return f"📄 HTML content (converted to Markdown):\n\n{truncate_content(markdown)}"
except Exception:
soup = BeautifulSoup(html, "html.parser")
text = soup.get_text(separator="\n").strip()
return f"📄 HTML content (raw text fallback):\n\n{truncate_content(text)}"
elif ext in [".mp3", ".wav"]:
return f"ℹ️ Audio file detected: {os.path.basename(file_path)}. Use transcribe_audio tool to process the audio content."
elif ext in [".mp4", ".mov", ".avi"]:
return f"ℹ️ Video file detected: {os.path.basename(file_path)}. Use transcribe_video tool to process the video content."
else:
return f"ℹ️ Unsupported file type: {ext}. File saved at {file_path}"
except Exception as e:
return f"❌ Could not read {file_path}: {e}"
class WikipediaSearchTool(Tool):
name = "wikipedia_search"
description = """Searches Wikipedia for a specific topic and returns a concise summary. Useful for background information on subjects, concepts, historical events, or scientific topics."""
inputs = {
"query": {
"type": "string",
"description": "The query or subject to search for on Wikipedia.",
}
}
output_type = "string"
def forward(self, query: str) -> str:
print(f"EXECUTING TOOL: wikipedia_search(query='{query}')")
try:
search_link = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={query}&format=json"
search_response = requests.get(search_link, timeout=10)
search_response.raise_for_status()
search_data = search_response.json()
if not search_data.get("query", {}).get("search", []):
return f"No Wikipedia info for '{query}'."
page_id = search_data["query"]["search"][0]["pageid"]
content_link = (
f"https://en.wikipedia.org/w/api.php?action=query&prop=extracts&"
f"exintro=1&explaintext=1&pageids={page_id}&format=json"
)
content_response = requests.get(content_link, timeout=10)
content_response.raise_for_status()
content_data = content_response.json()
extract = content_data["query"]["pages"][str(page_id)]["extract"]
if len(extract) > 1500:
extract = extract[:1500] + "..."
result = f"Wikipedia summary for '{query}':\n{extract}"
print(f"-> Tool Result (Wikipedia): {result[:100]}...")
return result
except Exception as e:
print(f"❌ Error in wikipedia_search: {e}")
traceback.print_exc()
return f"Error wiki: {e}"
class TranscribeAudioTool(Tool):
name = "transcribe_audio"
description = """Converts spoken content in audio files to text. Handles various audio formats and produces a transcript of the spoken content for analysis."""
inputs = {
"file_path": {
"type": "string",
"description": "The full path to the audio file that needs to be transcribed.",
}
}
output_type = "string"
def forward(self, file_path: str) -> str:
try:
import os
import tempfile
import speech_recognition as sr
from pydub import AudioSegment
# Verify file exists
if not os.path.exists(file_path):
return (
f"❌ Audio file not found at: {file_path}. Download the file first."
)
# Initialize recognizer
recognizer = sr.Recognizer()
# Convert to WAV if not already (needed for speech_recognition)
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext != ".wav":
# Create temp WAV file
temp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
# Convert to WAV using pydub
audio = AudioSegment.from_file(file_path)
audio.export(temp_wav, format="wav")
audio_path = temp_wav
else:
audio_path = file_path
# Transcribe audio using Google's speech recognition
with sr.AudioFile(audio_path) as source:
audio_data = recognizer.record(source)
transcript = recognizer.recognize_google(audio_data)
# Clean up temp file if created
if file_ext != ".wav" and os.path.exists(temp_wav):
os.remove(temp_wav)
return transcript.strip()
except Exception as e:
return f"❌ Transcription failed: {str(e)}"
class TranscibeVideoFileTool(Tool):
name = "transcribe_video"
description = """Extracts and transcribes speech from video files. Converts the audio portion of videos into readable text for analysis or reference."""
inputs = {
"file_path": {
"type": "string",
"description": "The full path to the video file that needs to be transcribed.",
}
}
output_type = "string"
def forward(self, file_path: str) -> str:
try:
# Verify file exists
if not os.path.exists(file_path):
return (
f"❌ Video file not found at: {file_path}. Download the file first."
)
import os
import tempfile
import moviepy.editor as mp
import speech_recognition as sr
# Extract audio from video
video = mp.VideoFileClip(file_path)
# Create temporary audio file
temp_audio = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
# Extract audio to WAV format (required for speech_recognition)
video.audio.write_audiofile(temp_audio, verbose=False, logger=None)
video.close()
# Initialize recognizer
recognizer = sr.Recognizer()
# Transcribe audio
with sr.AudioFile(temp_audio) as source:
audio_data = recognizer.record(source)
transcript = recognizer.recognize_google(audio_data)
# Clean up temp file
if os.path.exists(temp_audio):
os.remove(temp_audio)
return transcript.strip()
except Exception as e:
return f"❌ Video processing failed: {str(e)}"
class BraveWebSearchTool(Tool):
name = "web_search"
description = """Performs web searches and returns content from top results. Provides real-time information from across the internet including current events, facts, and website content relevant to your query."""
inputs = {
"query": {
"type": "string",
"description": "A web search query string (e.g., a question or query).",
}
}
output_type = "string"
# api_key = os.getenv("BRAVE_SEARCH_API_KEY")
api_key = "asdasfd"
count = 3
char_limit = 4000 # Adjust based on LLM context window
tool = BraveSearch.from_api_key(api_key=api_key, search_kwargs={"count": count})
def extract_main_text(self, url: str, char_limit: int) -> str:
try:
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(url, headers=headers, timeout=10)
soup = BeautifulSoup(response.text, "html.parser")
# Remove scripts/styles
for tag in soup(["script", "style", "noscript"]):
tag.extract()
# Heuristic: extract visible text from body
body = soup.body
if not body:
return "⚠️ Could not extract content."
text = " ".join(t.strip() for t in body.stripped_strings)
return text[:char_limit].strip()
except Exception as e:
return f"⚠️ Failed to extract article: {e}"
def forward(self, query: str) -> str:
try:
results_json = self.tool.run(query)
results = (
json.loads(results_json)
if isinstance(results_json, str)
else results_json
)
output_parts = []
for i, r in enumerate(results[: self.count], start=1):
title = html.unescape(r.get("title", "").strip())
link = r.get("link", "").strip()
article_text = self.extract_main_text(link, self.char_limit)
result_block = (
f"Result {i}:\n"
f"Title: {title}\n"
f"URL: {link}\n"
f"Extracted Content:\n{article_text}\n"
)
output_parts.append(result_block)
return "\n\n".join(output_parts).strip()
except Exception as e:
return f"Search failed: {str(e)}"
class DescribeImageTool(Tool):
name = "describe_image"
description = """Analyzes images and generates detailed text descriptions. Identifies objects, scenes, text, and visual elements within the image to provide context or understanding."""
inputs = {
"image_path": {
"type": "string",
"description": "The full path to the image file to describe.",
}
}
output_type = "string"
def forward(self, image_path: str) -> str:
import os
from PIL import Image
from transformers import BlipForConditionalGeneration, BlipProcessor
if not os.path.exists(image_path):
return f"❌ Image file does not exist: {image_path}"
try:
processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base", use_fast=True
)
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base"
)
image = Image.open(image_path).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
output_ids = model.generate(**inputs)
caption = processor.decode(output_ids[0], skip_special_tokens=True)
return caption.strip() or "⚠️ No caption could be generated."
except Exception as e:
return f"❌ Failed to describe image: {e}"
class DownloadFileFromLinkTool(Tool):
name = "download_file_from_link"
description = "Downloads files from a URL and saves them locally. Supports various formats including PDFs, documents, images, and data files. Returns the local file path for further processing."
inputs = {
"link": {"type": "string", "description": "The URL to download the file from."},
"file_name": {
"type": "string",
"description": "Desired name of the saved file, without extension.",
"nullable": True,
},
}
output_type = "string"
SUPPORTED_EXTENSIONS = {
".xlsx",
".pdf",
".txt",
".csv",
".json",
".xml",
".html",
".jpg",
".jpeg",
".png",
".mp4",
".mp3",
".wav",
".zip",
}
def forward(self, link: str, file_name: str = "taskfile") -> str:
print(f"⬇️ Downloading file from: {link}")
dir_path = "./downloads"
os.makedirs(dir_path, exist_ok=True)
try:
response = requests.get(link, stream=True, timeout=30)
except requests.RequestException as e:
return f"❌ Error: Request failed - {e}"
if response.status_code != 200:
return (
f"❌ Error: Unable to fetch file. Status code: {response.status_code}"
)
# Step 1: Try extracting extension from provided filename
base_name, provided_ext = os.path.splitext(file_name)
provided_ext = provided_ext.lower()
# Step 2: Check if provided extension is supported
if provided_ext and provided_ext in self.SUPPORTED_EXTENSIONS:
ext = provided_ext
else:
# Step 3: Try to infer from Content-Type
content_type = (
response.headers.get("Content-Type", "").split(";")[0].strip()
)
guessed_ext = mimetypes.guess_extension(content_type or "") or ""
# Step 4: If mimetype returned .bin or nothing useful, try to fallback to URL
if guessed_ext in ("", ".bin"):
parsed_link = urlparse(link)
_, url_ext = os.path.splitext(parsed_link.path)
if url_ext.lower() in self.SUPPORTED_EXTENSIONS:
ext = url_ext.lower()
else:
return f"⚠️ Warning: Cannot determine a valid file extension from '{content_type}' or URL. Please retry with an explicit valid filename and extension."
else:
ext = guessed_ext
# Step 5: Final path and save
file_path = os.path.join(dir_path, base_name + ext)
downloaded = 0
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
downloaded += len(chunk)
return file_path
class DuckDuckGoSearchTool(Tool):
name = "web_search"
description = """Performs web searches and returns content from top results. Provides real-time information from across the internet including current events, facts, and website content relevant to your query."""
inputs = {
"query": {
"type": "string",
"description": "The search query to run on DuckDuckGo",
},
}
output_type = "string"
def _configure(self, max_retries: int = 5, retry_sleep: int = 2):
self._max_retries = max_retries
self._retry_sleep = retry_sleep
def forward(self, query: str) -> str:
self._configure()
top_results = 5
retries = 0
max_retries = getattr(self, "_max_retries", 3)
retry_sleep = getattr(self, "_retry_sleep", 2)
while retries < max_retries:
try:
results = DDGS().text(
keywords=query,
region="wt-wt",
safesearch="moderate",
max_results=top_results,
)
if not results:
return "No results found."
output_lines = []
for idx, res in enumerate(results[:top_results], start=1):
title = res.get("title", "N/A")
url = res.get("href", "N/A")
snippet = res.get("body", "N/A")
output_lines.append(
f"Result {idx}:\n"
f"Title: {title}\n"
f"URL: {url}\n"
f"Snippet: {snippet}\n"
)
output = "\n".join(output_lines)
print(f"-> Tool Result (DuckDuckGo): {output[:1500]}...")
return output
except (
DuckDuckGoSearchException,
TimeoutException,
RatelimitException,
ConversationLimitException,
) as e:
retries += 1
self._retry_sleep +=2
print(
f"⚠️ DuckDuckGo Exception (Attempt {retries}/{max_retries}): {type(e).__name__}: {e}"
)
traceback.print_exc()
time.sleep(retry_sleep)
except Exception as e:
print(f"❌ Unexpected Error: {e}")
traceback.print_exc()
return f"Unhandled exception during DuckDuckGo search: {e}"
return f"❌ Failed to retrieve results after {max_retries} retries."
huggingface_ef = embedding_functions.HuggingFaceEmbeddingFunction(
model_name="sentence-transformers/all-mpnet-base-v2"
)
SUPPORTED_EXTENSIONS = [
".txt",
".md",
".py",
".pdf",
".json",
".jsonl",
".html",
".htm",
]
class AddDocumentToVectorStoreTool(Tool):
name = "add_document_to_vector_store"
description = "Processes a document and adds it to the vector database for semantic search. Automatically chunks files and creates text embeddings to enable powerful content retrieval."
inputs = {
"file_path": {
"type": "string",
"description": "Absolute path to the file to be indexed.",
}
}
output_type = "string"
def _load_file(self, path: Path):
"""Select the right loader for the file extension."""
if path.suffix == ".pdf":
return PyPDFLoader(str(path)).load()
elif path.suffix == ".json":
return JSONLoader(str(path), jq_schema=".").load()
elif path.suffix in [".md"]:
return UnstructuredFileLoader(str(path)).load()
elif path.suffix in [".html", ".htm"]:
return BSHTMLLoader(str(path)).load()
else: # fallback for .txt, .py, etc.
return TextLoader(str(path)).load()
def forward(self, file_path: str) -> str:
print(f"📄 Adding document to vector store: {file_path}")
try:
collection_name = "vectorstore"
path = Path(file_path)
if not path.exists() or path.suffix not in SUPPORTED_EXTENSIONS:
return f"Unsupported or missing file: {file_path}"
docs = self._load_file(path)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=50
)
split_docs = text_splitter.split_documents(docs)
client = chromadb.Client(
chromadb.config.Settings(
persist_directory="./chroma_store",
)
)
collection = client.get_or_create_collection(
name=collection_name,
configuration={"embedding_function": huggingface_ef},
)
texts = [doc.page_content for doc in split_docs]
metadatas = [doc.metadata for doc in split_docs]
collection.add(
documents=texts,
metadatas=metadatas,
ids=[f"{path.stem}_{i}" for i in range(len(texts))],
)
return f"✅ Successfully added {len(texts)} chunks from '{file_path}' to collection '{collection_name}'."
except Exception as e:
print(f"❌ Error in add_to_vector_store: {e}")
traceback.print_exc()
return f"Error: {e}"
class QueryVectorStoreTool(Tool):
name = "query_downloaded_documents"
description = "Performs semantic searches across your downloaded documents. Use detailed queries to find specific information, concepts, or answers from your collected resources."
inputs = {
"query": {
"type": "string",
"description": "The search query. Ensure this is constructed intelligently so to retrieve the most relevant outputs.",
}
}
output_type = "string"
def forward(self, query: str) -> str:
collection_name = "vectorstore"
k = 5
print(f"🔎 Querying vector store '{collection_name}' with: '{query}'")
try:
client = chromadb.Client(
chromadb.config.Settings(
persist_directory="./chroma_store",
)
)
collection = client.get_collection(name=collection_name)
results = collection.query(
query_texts=[query],
n_results=k,
)
formatted = []
for i in range(len(results["documents"][0])):
doc = results["documents"][0][i]
metadata = results["metadatas"][0][i]
formatted.append(
f"Result {i+1}:\n" f"Content: {doc}\n" f"Metadata: {metadata}\n"
)
return "\n".join(formatted) or "No relevant documents found."
except Exception as e:
print(f"❌ Error in query_vector_store: {e}")
traceback.print_exc()
return f"Error querying vector store: {e}"
@tool
def image_question_answering(image_path: str, prompt: str) -> str:
"""
Analyzes images and answers specific questions about their content. Can identify objects, read text, describe scenes, or interpret visual information based on your questions.
Args:
image_path: The path to the image file
prompt: The question to ask about the image
Returns:
A string answer generated by the local Ollama model
"""
# Check for supported file types
file_extension = image_path.lower().split(".")[-1]
if file_extension not in ["jpg", "jpeg", "png", "bmp", "gif", "webp"]:
return "Unsupported file type. Please provide an image."
path = Path(image_path)
if not path.exists():
return f"File not found at: {image_path}"
# Send the image and prompt to Ollama's local model
response = chat(
model="llava", # Assuming your model is named 'lava'
messages=[
{
"role": "user",
"content": prompt,
"images": [path],
},
],
options={"temperature": 0.2}, # Slight randomness for naturalness
)
return response.message.content.strip()
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Loads a webpage from a URL and converts its content to markdown format. Use this to browse websites, extract information, or identify downloadable resources from a specific web address."
inputs = {
"url": {
"type": "string",
"description": "The url of the webpage to visit.",
}
}
output_type = "string"
def forward(self, url: str) -> str:
try:
from urllib.parse import urlparse
import requests
from bs4 import BeautifulSoup
from markdownify import markdownify
from requests.exceptions import RequestException
from smolagents.utils import truncate_content
except ImportError as e:
raise ImportError(
"You must install packages `markdownify`, `requests`, and `beautifulsoup4` to run this tool: for instance run `pip install markdownify requests beautifulsoup4`."
) from e
try:
# Get the webpage content
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
response = requests.get(url, headers=headers, timeout=20)
response.raise_for_status()
# Parse the HTML with BeautifulSoup
soup = BeautifulSoup(response.text, "html.parser")
# Extract domain name for context
domain = urlparse(url).netloc
# Remove common clutter elements
self._remove_clutter(soup)
# Try to identify and prioritize main content
main_content = self._extract_main_content(soup)
if main_content:
# Convert the cleaned HTML to markdown
markdown_content = markdownify(str(main_content)).strip()
else:
# Fallback to full page content if main content extraction fails
markdown_content = markdownify(str(soup)).strip()
# Post-process the markdown content
markdown_content = self._clean_markdown(markdown_content)
# Add source information
result = f"Content from {domain}:\n\n{markdown_content}"
return truncate_content(result, 40000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def _remove_clutter(self, soup):
"""Remove common elements that clutter web pages."""
# Common non-content elements to remove
clutter_selectors = [
"header",
"footer",
"nav",
".nav",
".navigation",
".menu",
".sidebar",
".footer",
".header",
"#footer",
"#header",
"#nav",
"#sidebar",
".widget",
".cookie",
".cookies",
".ad",
".ads",
".advertisement",
"script",
"style",
"noscript",
"iframe",
".social",
".share",
".comment",
".comments",
".subscription",
".newsletter",
'[role="banner"]',
'[role="navigation"]',
'[role="complementary"]',
]
for selector in clutter_selectors:
for element in soup.select(selector):
element.decompose()
# Remove hidden elements
for hidden in soup.select(
'[style*="display: none"], [style*="display:none"], [style*="visibility: hidden"], [style*="visibility:hidden"], [hidden]'
):
hidden.decompose()
def _extract_main_content(self, soup):
"""Try to identify and extract the main content of the page."""
# Priority order for common main content containers
main_content_selectors = [
"main",
'[role="main"]',
"article",
".content",
".main-content",
".post-content",
"#content",
"#main",
"#main-content",
".article",
".post",
".entry",
".page-content",
".entry-content",
]
# Try to find the main content container
for selector in main_content_selectors:
main_content = soup.select(selector)
if main_content:
# If multiple matches, find the one with the most text content
if len(main_content) > 1:
return max(main_content, key=lambda x: len(x.get_text()))
return main_content[0]
# If no main content container found, look for the largest text block
paragraphs = soup.find_all("p")
if paragraphs:
# Find the parent that contains the most paragraphs
parents = {}
for p in paragraphs:
if p.parent:
if p.parent not in parents:
parents[p.parent] = 0
parents[p.parent] += 1
if parents:
# Return the parent with the most paragraphs
return max(parents.items(), key=lambda x: x[1])[0]
# Return None if we can't identify main content
return None
def _clean_markdown(self, content):
"""Clean up the markdown content."""
# Normalize whitespace
content = re.sub(r"\n{3,}", "\n\n", content)
# Remove consecutive duplicate links
content = re.sub(r"(\[.*?\]\(.*?\))\s*\1+", r"\1", content)
# Remove very short lines that are likely menu items
lines = content.split("\n")
filtered_lines = []
# Skip consecutive short lines (likely menus)
short_line_threshold = 40 # characters
consecutive_short_lines = 0
max_consecutive_short_lines = 3
for line in lines:
stripped_line = line.strip()
if len(
stripped_line
) < short_line_threshold and not stripped_line.startswith("#"):
consecutive_short_lines += 1
if consecutive_short_lines > max_consecutive_short_lines:
continue
else:
consecutive_short_lines = 0
filtered_lines.append(line)
content = "\n".join(filtered_lines)
# Remove duplicate headers
seen_headers = set()
lines = content.split("\n")
filtered_lines = []
for line in lines:
if line.startswith("#"):
header_text = line.strip()
if header_text in seen_headers:
continue
seen_headers.add(header_text)
filtered_lines.append(line)
content = "\n".join(filtered_lines)
# Remove lines containing common footer patterns
footer_patterns = [
r"^copyright",
r"^©",
r"^all rights reserved",
r"^terms",
r"^privacy policy",
r"^contact us",
r"^follow us",
r"^social media",
r"^disclaimer",
]
footer_pattern = "|".join(footer_patterns)
lines = content.split("\n")
filtered_lines = []
for line in lines:
if not re.search(footer_pattern, line.lower()):
filtered_lines.append(line)
content = "\n".join(filtered_lines)
return content
class ArxivSearchTool(Tool):
name = "arxiv_search"
description = """Searches arXiv for academic papers and returns structured information including titles, authors, publication dates, abstracts, and download links."""
inputs = {
"query": {
"type": "string",
"description": "A research-related query (e.g., 'AI regulation')",
},
"from_date": {
"type": "string",
"description": "Optional search start date in format (YYYY or YYYY-MM or YYYY-MM-DD) (e.g., '2022-06' or '2022' or '2022-04-12')",
"nullable": True,
},
"to_date": {
"type": "string",
"description": "Optional search end date in (YYYY or YYYY-MM or YYYY-MM-DD) (e.g., '2022-06' or '2022' or '2022-04-12')",
"nullable": True,
},
}
output_type = "string"
def forward(
self,
query: str,
from_date: str = None,
to_date: str = None,
) -> str:
# 1) build URL
url = build_arxiv_url(query, from_date, to_date, size=50)
# 2) fetch & parse
try:
papers = fetch_and_parse_arxiv(url)
except Exception as e:
return f"❌ Failed to fetch or parse arXiv results: {e}"
if not papers:
return "No results found for your query."
# 3) format into a single string
output_lines = []
for idx, p in enumerate(papers, start=1):
output_lines += [
f"🔍 RESULT {idx}",
f"Title : {p['title']}",
f"Authors : {p['authors']}",
f"Published : {p['published']}",
f"Summary : {p['abstract'][:500]}{'...' if len(p['abstract'])>500 else ''}",
f"Entry ID : {p['entry_link']}",
f"Download link: {p['download_link']}",
"",
]
return "\n".join(output_lines).strip()
def fetch_and_parse_arxiv(url: str) -> List[Dict[str, str]]:
"""
Fetches the given arXiv advanced‐search URL, parses the HTML,
and returns a list of results. Each result is a dict containing:
- title
- authors
- published
- abstract
- entry_link
- doi (or "[N/A]" if none)
"""
resp = requests.get(url)
resp.raise_for_status()
soup = BeautifulSoup(resp.text, "html.parser")
results = []
for li in soup.find_all("li", class_="arxiv-result"):
# Title
t = li.find("p", class_="title")
title = t.get_text(strip=True) if t else ""
# Authors
a = li.find("p", class_="authors")
authors = a.get_text(strip=True).replace("Authors:", "").strip() if a else ""
# Abstract
ab = li.find("span", class_="abstract-full")
abstract = (
ab.get_text(strip=True).replace("Abstract:", "").strip() if ab else ""
)
# Published date
d = li.find("p", class_="is-size-7")
published = d.get_text(strip=True) if d else ""
# Entry link
lt = li.find("p", class_="list-title")
entry_link = lt.find("a")["href"] if lt and lt.find("a") else ""
# DOI
idblock = li.find("p", class_="list-identifier")
if idblock:
for a_tag in idblock.find_all("a", href=True):
if "doi.org" in a_tag["href"]:
doi = a_tag["href"]
break
results.append(
{
"title": title,
"authors": authors,
"published": published,
"abstract": abstract,
"entry_link": entry_link,
"download_link": (
entry_link.replace("abs", "pdf") if "abs" in entry_link else "N/A"
),
}
)
return results
def build_arxiv_url(
query: str, from_date: str = None, to_date: str = None, size: int = 50
) -> str:
"""
Build an arXiv advanced-search URL matching the exact segment order:
1) ?advanced
2) terms-0-operator=AND
3) terms-0-term=…
4) terms-0-field=all
5) classification-physics_archives=all
6) classification-include_cross_list=include
[ optional date‐range block ]
7) abstracts=show
8) size=…
9) order=-announced_date_first
If from_date or to_date is None, the date-range block is omitted.
"""
base = "https://arxiv.org/search/advanced?advanced="
parts = [
"&terms-0-operator=AND",
f"&terms-0-term={quote_plus(query)}",
"&terms-0-field=all",
"&classification-physics_archives=all",
"&classification-include_cross_list=include",
]
# optional date-range filtering
if from_date and to_date:
parts += [
"&date-year=",
"&date-filter_by=date_range",
f"&date-from_date={from_date}",
f"&date-to_date={to_date}",
"&date-date_type=submitted_date",
]
parts += [
"&abstracts=show",
f"&size={size}",
"&order=-announced_date_first",
]
return base + "".join(parts)
|