File size: 16,508 Bytes
8c5bbef 1aa70af 8c5bbef 1aa70af 8c5bbef edec21a 8c5bbef 263a013 8c5bbef 263a013 1aa70af 8c5bbef bd7e032 8c5bbef bd7e032 8c5bbef bd7e032 8c5bbef b922347 bd7e032 8c5bbef 78d3fe1 8c5bbef a931dc2 8c5bbef a931dc2 8c5bbef b922347 8c5bbef b922347 8c5bbef b922347 8c5bbef b922347 8c5bbef a931dc2 8c5bbef b922347 85c5434 b922347 a931dc2 b922347 8c5bbef b922347 8c5bbef b922347 8c5bbef b922347 8c5bbef dbcccc7 8c5bbef 08eb725 bd7e032 b922347 08eb725 b922347 08eb725 a931dc2 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 08eb725 b922347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import os
from dotenv import load_dotenv
# Import models from SmolaAgents
from smolagents import CodeAgent, LiteLLMModel, OpenAIServerModel
# Import SmolaAgents tools
from smolagents.default_tools import FinalAnswerTool, PythonInterpreterTool
# Import custom tools
from tools import (
AddDocumentToVectorStoreTool,
ArxivSearchTool,
DownloadFileFromLinkTool,
DuckDuckGoSearchTool,
QueryVectorStoreTool,
ReadFileContentTool,
TranscibeVideoFileTool,
TranscribeAudioTool,
VisitWebpageTool,
WikipediaSearchTool,
image_question_answering,
)
# Import utility functions
from utils import extract_final_answer, replace_tool_mentions
class BoomBot:
def __init__(self, provider="anthropic"):
"""
Initialize the BoomBot with the specified provider.
Args:
provider (str): The model provider to use (e.g., "groq", "qwen", "gemma", "anthropic", "deepinfra", "meta")
"""
load_dotenv()
self.provider = provider
self.model = self._initialize_model()
self.agent = self._create_agent()
def _initialize_model(self):
"""
Initialize the appropriate model based on the provider.
Returns:
The initialized model object
"""
if self.provider == "qwen":
qwen_model = "ollama_chat/qwen3:8b"
return LiteLLMModel(
model_id=qwen_model,
device="cuda",
num_ctx=32768,
temperature=0.6,
top_p=0.95,
)
elif self.provider == "gemma":
gemma_model = "ollama_chat/gemma3:12b-it-qat"
return LiteLLMModel(
model_id=gemma_model,
num_ctx=65536,
temperature=1.0,
device="cuda",
top_k=64,
top_p=0.95,
min_p=0.0,
)
elif self.provider == "anthropic":
model_id = "anthropic/claude-3-5-haiku-latest"
return LiteLLMModel(
model_id=model_id,
temperature=0.6,
max_tokens=8192,
api_key=os.getenv("ANTHROPIC_API_KEY"),
)
elif self.provider == "deepinfra":
deepinfra_model = "Qwen/Qwen3-235B-A22B"
# return OpenAIServerModel(
# model_id=deepinfra_model,
# api_base="https://api.deepinfra.com/v1/openai",
# api_key=os.getenv("ANTHROPIC_API_KEY"),
# flatten_messages_as_text=True,
# max_tokens=8192,
# temperature=0.1,
# )
return LiteLLMModel(
model_id="deepinfra/"+ deepinfra_model,
api_base="https://api.deepinfra.com/v1/openai",
api_key=os.getenv("DEEPINFRA_API_KEY"),
flatten_messages_as_text=True,
max_tokens=8192,
temperature=0.7,
)
elif self.provider == "meta":
meta_model = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
meta_model = "Qwen/Qwen2.5-72B-Instruct"
# return OpenAIServerModel(
# model_id=meta_model,
# api_base="https://api.deepinfra.com/v1/openai",
# api_key=os.getenv("DEEPINFRA_API_KEY"),
# flatten_messages_as_text=True,
# max_tokens=8192,
# temperature=0.7,
# )
return LiteLLMModel(
model_id="deepinfra/"+ meta_model,
api_base="https://api.deepinfra.com/v1/openai",
api_key=os.getenv("DEEPINFRA_API_KEY"),
flatten_messages_as_text=True,
max_tokens=8192,
temperature=0.7,
)
elif self.provider == "google":
meta_model = "google/gemini-2.5-flash"
# return OpenAIServerModel(
# model_id=meta_model,
# api_base="https://api.deepinfra.com/v1/openai",
# api_key=os.getenv("DEEPINFRA_API_KEY"),
# flatten_messages_as_text=True,
# max_tokens=8192,
# temperature=0.7,
# )
return LiteLLMModel(
model_id="deepinfra/"+ meta_model,
api_base="https://api.deepinfra.com/v1/openai",
api_key=os.getenv("DEEPINFRA_API_KEY"),
flatten_messages_as_text=True,
max_tokens=8192,
temperature=0.7,
)
elif self.provider == "groq":
# Default to use groq's claude-3-opus or llama-3
model_id = "claude-3-opus-20240229"
return LiteLLMModel(model_id=model_id, temperature=0.7, max_tokens=8192)
else:
raise ValueError(f"Unsupported provider: {self.provider}")
def _create_agent(self):
"""
Create and configure the agent with all necessary tools.
Returns:
The configured CodeAgent
"""
# Initialize tools
download_file = DownloadFileFromLinkTool()
read_file_content = ReadFileContentTool()
visit_webpage = VisitWebpageTool()
# transcribe_video = TranscibeVideoFileTool()
transcribe_audio = TranscribeAudioTool()
get_wikipedia_info = WikipediaSearchTool()
web_searcher = DuckDuckGoSearchTool()
arxiv_search = ArxivSearchTool()
add_doc_vectorstore = AddDocumentToVectorStoreTool()
retrieve_doc_vectorstore = QueryVectorStoreTool()
# SmolaAgents default tools
python_interpreter = PythonInterpreterTool()
final_answer = FinalAnswerTool()
# Combine all tools
agent_tools = [
web_searcher,
download_file,
read_file_content,
visit_webpage,
# transcribe_video,
transcribe_audio,
get_wikipedia_info,
arxiv_search,
add_doc_vectorstore,
retrieve_doc_vectorstore,
# image_question_answering,
python_interpreter,
final_answer,
]
# Additional imports for the Python interpreter
additional_imports = [
# Built-in / core Python
"json",
"os",
"glob",
"pathlib",
"argparse",
"pickle",
"io",
"re",
"datetime",
"collections",
"math",
"random",
"csv",
"zipfile",
"itertools",
"functools",
"requests",
"bs4",
# Data handling
"pandas",
"numpy",
"dask", # For handling large datasets
"polars", # Fast DataFrame alternative
"pyarrow", # For Arrow/Parquet file formats
"h5py", # For HDF5 files
"openpyxl", # Excel reading/writing
"yaml", # Config file parsing
# Basic plotting
"matplotlib",
"seaborn"
]
# Create the agent
agent = CodeAgent(
tools=agent_tools,
max_steps=15,
model=self.model,
add_base_tools=False,
stream_outputs=True,
additional_authorized_imports=additional_imports,
)
# Modify the system prompt
modified_prompt = replace_tool_mentions(agent.system_prompt)
agent.system_prompt = modified_prompt
return agent
def _get_system_prompt(self):
"""
Return the system prompt for the agent.
Returns:
str: The system prompt
"""
return """
YOUR BEHAVIOR GUIDELINES:
• Do NOT make unfounded assumptions—always ground answers in reliable sources or search results.
• For math or puzzles: break the problem into code/math, then solve programmatically.
RESEARCH WORKFLOW:
1. SEARCH
- Begin with web_search, wikipedia_search, or arxiv_search.
- Refine your query if results are weak—don't just retry the same terms.
- If one search tool yields little, try another before moving on to downloads.
2. VISIT
- Use visit_webpage to preview content from promising links.
- If the content is long, complex, spans multiple pages, or may be needed later, do NOT rely solely on visit_webpage.
- Move quickly to downloading: avoid repeated visits when the content should be archived.
3. DOWNLOAD AND ADD TO VECTORSTORE (MANDATORY IF CONTENT IS LONG, DENSE, COMPLEX, MULTIPLE FILES OR LINKS TO VISIT)
- Use download_file_from_link on all valuable resources (including html pages or pdfs).
- Especially when a page is detailed, technical, or multi-part, downloading is preferred.
- You can (and should) download webpages as HTML. Do this whenever the site might be referenced again later.
4. INDEX & QUERY
- Immediately add downloaded files to the vector store using add_document_to_vector_store.
- For complex tasks or unclear answers, prefer querying vector store over re-visiting pages.
- If you've downloaded a file, **always index it unless clearly irrelevant.**
5. READ
- Use read_file_content to analyze file contents (html, pdf, text).
- You can also use query_downloaded_documents for deeper understanding.
6. EVALUATE
- ✅ If the answer is clear from current sources, respond.
- ❌ If not, continue iterating and analyzing downloaded material.
FALLBACK & ADAPTATION:
• If a tool fails, reformulate or switch tools.
• For arXiv: web_search might help you find the paper; follow with direct download of the PDF via download_file_from_link.
MANDATORY DOWNLOAD & INDEX WHEN:
• The page is lengthy or technical (e.g., research papers, government sites, legal docs, blog posts with code).
• You suspect you'll need to return to the content.
• You are working on multi-hop reasoning or long-term memory tasks.
COMMON TOOL CHAINS:
• FACTUAL Qs:
web_search → final_answer
• CURRENT EVENTS:
web_search → visit_webpage → (download + index if needed) → final_answer
• DOCUMENT-BASED Qs:
web_search → download_file_from_link → add_document_to_vector_store → query_downloaded_documents → final_answer
• ARXIV PAPERS:
arxiv_search → download_file_from_link → add_document_to_vector_store → query_downloaded_documents → final_answer
• MEDIA ANALYSIS:
download_file_from_link → transcribe_audio → final_answer
FINAL ANSWER FORMAT:
- Begin with "FINAL ANSWER: "
- Number → digits only (e.g., 42)
- String → exact text (e.g., Pope Francis) without quotation marks
- List → comma-separated, no brackets unless specified (e.g., 2, 3, 4)
- End with: FINAL ANSWER: <your_answer>
"""
def run(self, question: str, task_id: str, to_download) -> str:
"""
Run the agent with the given question, task_id, and download flag.
Args:
question (str): The question or task for the agent to process
task_id (str): A unique identifier for the task
to_download (Bool): Flag indicating whether to download resources
Returns:
str: The agent's response
"""
prompt = self._get_system_prompt()
# Task introduction
prompt += "\nHere is the Task you need to solve:\n\n"
prompt += f"Task: {question}\n\n"
# Include download instructions if applicable
if to_download:
link = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
prompt += (
"IMPORTANT: Before solving the task, you must download a required file.\n"
f"Use the `download_file_from_link` tool with this link: {link}\n"
"After downloading, use the appropriate tool to read or process the file "
"before attempting to solve the task.\n\n"
)
# Run the agent with the given question
result = self.agent.run(prompt)
# Extract the final answer from the result
final_answer = extract_final_answer(result)
return final_answer
if __name__ == "__main__":
import os
import csv
import time
import requests
from utils import load_online_qas, extract_final_answer
CSV_FILE = "evals/llm_eval.csv"
FIELDNAMES = ["model", "task_id", "question", "llm_answer", "processed_answer", "real_answer"]
def ensure_csv():
"""Create the CSV file with header if it doesn't exist."""
if not os.path.isfile(CSV_FILE):
with open(CSV_FILE, mode="w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=FIELDNAMES)
writer.writeheader()
def append_results(rows):
"""Append a list of dict rows to the CSV."""
with open(CSV_FILE, mode="a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=FIELDNAMES)
for row in rows:
writer.writerow(row)
agent = BoomBot(provider="deepinfra")
model_name = agent.provider # e.g. "gemma"
file_online = load_online_qas(file_path=r"../../Final_Assignment_Template/allqas.jsonl", has_file=True)
nofile_online = load_online_qas(file_path=r"../../Final_Assignment_Template/allqas.jsonl", has_file=False)
excluded_keywords = ["youtube", "video", "chess"]
rows_to_append = []
# 1) With downloadable files
for entry in file_online:
task_id = entry["task_id"]
question = entry["Question"]
real_answer = entry["Final answer"]
file_name = entry.get("file_name", "")
to_download = bool(file_name)
link = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
if any(kw in question.lower() for kw in excluded_keywords):
llm_answer = processed = "NOT ATTEMPTED"
else:
try:
resp = requests.get(link)
if resp.status_code != 200:
llm_answer = processed = "NOT ATTEMPTED"
else:
llm_answer = agent.run(question, task_id, to_download)
processed = extract_final_answer(llm_answer).strip()
# time.sleep(10)
except Exception as e:
llm_answer = processed = f"[Error] {e}"
# time.sleep(6)
rows_to_append.append({
"model": model_name,
"task_id": task_id,
"question": question,
"llm_answer": llm_answer,
"processed_answer": processed,
"real_answer": real_answer,
})
print("REAL ANSWER:", real_answer)
# 2) Without downloadable files
for entry in nofile_online:
task_id = entry["task_id"]
question = entry["Question"]
real_answer = entry["Final answer"]
if any(kw in question.lower() for kw in excluded_keywords):
llm_answer = processed = "NOT ATTEMPTED"
else:
try:
llm_answer = agent.run(question, task_id, to_download=False)
processed = extract_final_answer(llm_answer).strip()
# time.sleep(10)
except Exception as e:
llm_answer = processed = f"[Error] {e}"
# time.sleep(6)
rows_to_append.append({
"model": model_name,
"task_id": task_id,
"question": question,
"llm_answer": llm_answer,
"processed_answer": processed,
"real_answer": real_answer,
})
print("REAL ANSWER:", real_answer)
# ensure CSV exists and append
ensure_csv()
append_results(rows_to_append)
print(f"✅ Appended {len(rows_to_append)} rows to {CSV_FILE}") |