File size: 17,621 Bytes
ef7a70c
b69b087
 
ef7a70c
 
 
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
ef7a70c
b69b087
 
ef7a70c
 
b69b087
 
ef7a70c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
ef7a70c
 
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
 
 
 
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
ef7a70c
b69b087
 
 
 
 
ef7a70c
 
b69b087
 
 
 
 
 
 
 
 
 
ef7a70c
 
 
b69b087
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
 
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
 
 
b69b087
 
 
 
 
 
 
ef7a70c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import math
import os
import re
import subprocess
import sys

import fitz  # PyMuPDF
import requests
from langchain_community.retrievers import BM25Retriever
from smolagents import Tool


class DetectVisualElementsTool(Tool):
    name = "detect_visual_elements"
    description = """Detects objects, people, and common visual elements in an image using a pretrained object detection model."""

    inputs = {
        "image_path": {
            "type": "string",
            "description": "The full path to the image file to analyze.",
        }
    }
    output_type = "string"

    def forward(self, image_path: str) -> list:
        import os

        import torch
        import torchvision.models.detection as models
        import torchvision.transforms as T
        from PIL import Image

        label_map = {
            0: "unlabeled",
            1: "person",
            2: "bicycle",
            3: "car",
            4: "motorcycle",
            5: "airplane",
            6: "bus",
            7: "train",
            8: "truck",
            9: "boat",
            10: "traffic",
            11: "fire",
            12: "street",
            13: "stop",
            14: "parking",
            15: "bench",
            16: "bird",
            17: "cat",
            18: "dog",
            19: "horse",
            20: "sheep",
            21: "cow",
            22: "elephant",
            23: "bear",
            24: "zebra",
            25: "giraffe",
            26: "hat",
            27: "backpack",
            28: "umbrella",
            29: "shoe",
            30: "eye",
            31: "handbag",
            32: "tie",
            33: "suitcase",
            34: "frisbee",
            35: "skis",
            36: "snowboard",
            37: "sports",
            38: "kite",
            39: "baseball",
            40: "baseball",
            41: "skateboard",
            42: "surfboard",
            43: "tennis",
            44: "bottle",
            45: "plate",
            46: "wine",
            47: "cup",
            48: "fork",
            49: "knife",
            50: "spoon",
            51: "bowl",
            52: "banana",
            53: "apple",
            54: "sandwich",
            55: "orange",
            56: "broccoli",
            57: "carrot",
            58: "hot",
            59: "pizza",
            60: "donut",
            61: "cake",
            62: "chair",
            63: "couch",
            64: "potted",
            65: "bed",
            66: "mirror",
            67: "dining",
            68: "window",
            69: "desk",
            70: "toilet",
            71: "door",
            72: "tv",
            73: "laptop",
            74: "mouse",
            75: "remote",
            76: "keyboard",
            77: "cell",
            78: "microwave",
            79: "oven",
            80: "toaster",
            81: "sink",
            82: "refrigerator",
            83: "blender",
            84: "book",
            85: "clock",
            86: "vase",
            87: "scissors",
            88: "teddy",
            89: "hair",
            90: "toothbrush",
            91: "hair",
            92: "banner",
            93: "blanket",
            94: "branch",
            95: "bridge",
            96: "building",
            97: "bush",
            98: "cabinet",
            99: "cage",
            100: "cardboard",
            101: "carpet",
            102: "ceiling",
            103: "ceiling",
            104: "cloth",
            105: "clothes",
            106: "clouds",
            107: "counter",
            108: "cupboard",
            109: "curtain",
            110: "desk",
            111: "dirt",
            112: "door",
            113: "fence",
            114: "floor",
            115: "floor",
            116: "floor",
            117: "floor",
            118: "floor",
            119: "flower",
            120: "fog",
            121: "food",
            122: "fruit",
            123: "furniture",
            124: "grass",
            125: "gravel",
            126: "ground",
            127: "hill",
            128: "house",
            129: "leaves",
            130: "light",
            131: "mat",
            132: "metal",
            133: "mirror",
            134: "moss",
            135: "mountain",
            136: "mud",
            137: "napkin",
            138: "net",
            139: "paper",
            140: "pavement",
            141: "pillow",
            142: "plant",
            143: "plastic",
            144: "platform",
            145: "playingfield",
            146: "railing",
            147: "railroad",
            148: "river",
            149: "road",
            150: "rock",
            151: "roof",
            152: "rug",
            153: "salad",
            154: "sand",
            155: "sea",
            156: "shelf",
            157: "sky",
            158: "skyscraper",
            159: "snow",
            160: "solid",
            161: "stairs",
            162: "stone",
            163: "straw",
            164: "structural",
            165: "table",
            166: "tent",
            167: "textile",
            168: "towel",
            169: "tree",
            170: "vegetable",
            171: "wall",
            172: "wall",
            173: "wall",
            174: "wall",
            175: "wall",
            176: "wall",
            177: "wall",
            178: "water",
            179: "waterdrops",
            180: "window",
            181: "window",
            182: "wood",
        }

        if not os.path.exists(image_path):
            return [f"❌ Image file does not exist: {image_path}"]

        try:
            model = models.fasterrcnn_resnet50_fpn(pretrained=True)
            model.eval()

            image = Image.open(image_path).convert("RGB")
            transform = T.Compose([T.ToTensor()])
            img_tensor = transform(image).unsqueeze(0)

            with torch.no_grad():
                predictions = model(img_tensor)[0]

            labels_list = []
            for label_id, score in zip(predictions["labels"], predictions["scores"]):
                if score > 0.8:
                    print(str(label_id.item()))
                    labels_list.append(label_map.get(label_id.item()))

            labels = ",".join(labels_list)

            return labels or ["⚠️ No confident visual elements detected."]
        except Exception as e:
            return [f"❌ Failed to detect visual elements: {e}"]


class ChessPositionSolverTool(Tool):
    name = "chess_position_solver"
    description = """Analyzes a chessboard image (from a URL or a local file path), detects the position using computer vision,
    and returns the best move in algebraic notation using the Stockfish engine (e.g., 'Qh5#')."""

    inputs = {
        "url": {
            "type": "string",
            "description": "Optional. URL pointing to an image of a chessboard position.",
            "nullable": True,
        },
        "file_path": {
            "type": "string",
            "description": "Optional. Local file path to an image of a chessboard position.",
            "nullable": True,
        },
    }

    output_type = "string"

    def forward(self, url: str = None, file_path: str = None) -> str:
        if not url and not file_path:
            return "❌ Please provide either a URL or a local file path to the chessboard image."
        if url and file_path:
            return "❌ Provide only one of: 'url' or 'file_path', not both."

        try:
            # Step 1 - Load image
            if url:
                img_bytes = requests.get(url, timeout=30).content
                img = cv2.imdecode(np.frombuffer(img_bytes, np.uint8), cv2.IMREAD_COLOR)
            else:
                if not os.path.exists(file_path):
                    return f"❌ File not found: {file_path}"
                img = cv2.imread(file_path)

            if img is None:
                return "❌ Could not decode the image. Ensure the file is a valid chessboard image."

            # Step 2 - Infer FEN with chesscog
            detector = Chesscog(device="cpu")
            fen = detector.get_fen(img)
            if fen is None:
                return "❌ Could not detect chessboard or recognize position."

            board = chess.Board(fen)

            STOCKFISH_PATH = os.getenv(
                "STOCKFISH_PATH",
                "/home/boom/Desktop/repos/boombot/engines/stockfish-ubuntu-x86-64-bmi2",
            )  # Ensure Stockfish is available

            # Step 3 - Analyze with Stockfish
            engine = chess.engine.SimpleEngine.popen_uci(STOCKFISH_PATH)
            result = engine.play(board, chess.engine.Limit(depth=18))  # fixed depth
            engine.quit()

            best_move = board.san(result.move)
            return best_move

        except Exception as e:
            return f"❌ chess_position_solver failed: {str(e)}"


def patch_pyproject(path):
    pyproject_path = os.path.join(path, "pyproject.toml")
    if not os.path.exists(pyproject_path):
        raise FileNotFoundError(f"No pyproject.toml found in {path}")

    with open(pyproject_path, "r", encoding="utf-8") as f:
        lines = f.readlines()

    with open(pyproject_path, "w", encoding="utf-8") as f:
        for line in lines:
            if re.match(r"\s*python\s*=", line):
                f.write('python = ">=3.8,<3.12"\n')
            else:
                f.write(line)


def install_chesscog():
    TARGET_DIR = "chesscog"
    REPO_URL = "https://github.com/georg-wolflein/chesscog.git"

    try:
        pass

        print("βœ… chesscog already installed.")
        # return
    except ImportError:
        print("⬇️ Installing chesscog...")

    if not os.path.exists(TARGET_DIR):
        subprocess.run(["git", "clone", REPO_URL, TARGET_DIR], check=True)

    patch_pyproject(TARGET_DIR)

    subprocess.run(
        [sys.executable, "-m", "pip", "install", f"./{TARGET_DIR}"], check=True
    )
    print("βœ… chesscog installed successfully.")


class RetrieverTool(Tool):
    name = "retriever"
    description = "Retrieves the most similar known question to the query."
    inputs = {
        "query": {
            "type": "string",
            "description": "The query from the user (a question).",
        }
    }
    output_type = "string"

    def __init__(self, docs, **kwargs):
        super().__init__(**kwargs)
        self.retriever = BM25Retriever.from_documents(docs, k=1)

    def forward(self, query: str) -> str:
        docs = self.retriever.invoke(query)
        if docs:
            doc = docs[0]
            return f"{doc.page_content}\n\nEXAMPLE FINAL ANSWER:\n{doc.metadata['answer']}\n"
        else:
            return "No similar question found."


class CalculatorTool(Tool):
    name = "calculator"
    description = """Performs basic mathematical calculations (e.g., addition, subtraction, multiplication, division, exponentiation, square root).
Use this tool whenever math is required, especially for numeric reasoning."""

    inputs = {
        "expression": {
            "type": "string",
            "description": "A basic math expression, e.g., '5 + 3 * 2', 'sqrt(49)', '2 ** 3'. No variables or natural language.",
        }
    }
    output_type = "string"

    def forward(self, expression: str) -> str:
        try:
            allowed_names = {
                k: v for k, v in math.__dict__.items() if not k.startswith("__")
            }
            allowed_names.update({"abs": abs, "round": round})
            result = eval(expression, {"__builtins__": {}}, allowed_names)
            return str(result)
        except Exception as e:
            return f"Error: Invalid math expression. ({e})"


class AnalyzeChessImageTool(Tool):
    name = "analyze_chess_image"
    description = """Extracts the board state from a chessboard image and returns the best move for black (in algebraic notation)."""

    inputs = {
        "file_path": {
            "type": "string",
            "description": "Path to the image file of the chess board.",
        }
    }
    output_type = "string"

    def forward(self, file_path: str) -> str:
        try:
            import chess
            import chess.engine
            import chessvision  # hypothetical or use OpenCV + custom board parser

            board = chessvision.image_to_board(file_path)
            if not board or not board.turn == chess.BLACK:
                return "❌ Invalid board or not black's turn."

            engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")
            result = engine.play(board, chess.engine.Limit(time=0.1))
            move = result.move.uci()
            engine.quit()

            return move
        except Exception as e:
            return f"❌ Chess analysis failed: {e}"


class ExecutePythonCodeTool(Tool):
    name = "execute_python_code"
    description = """Executes a provided Python code snippet in a controlled, sandboxed environment.
    This tool is used to safely run Python code and return the output or result of the execution."""

    inputs = {
        "code": {
            "type": "string",
            "description": "A valid Python code block that needs to be executed. It should be a string containing executable Python code.",
        }
    }
    output_type = "string"

    def forward(self, code: str) -> str:
        try:
            # Create a restricted environment to execute the code safely
            # Only allow standard Python libraries and prevent unsafe functions like `os.system` or `eval`
            restricted_globals = {
                "__builtins__": {
                    "abs": abs,
                    "all": all,
                    "any": any,
                    "bin": bin,
                    "bool": bool,
                    "chr": chr,
                    "complex": complex,
                    "dict": dict,
                    "divmod": divmod,
                    "float": float,
                    "hash": hash,
                    "hex": hex,
                    "int": int,
                    "isinstance": isinstance,
                    "len": len,
                    "max": max,
                    "min": min,
                    "oct": oct,
                    "pow": pow,
                    "range": range,
                    "round": round,
                    "set": set,
                    "sorted": sorted,
                    "str": str,
                    "tuple": tuple,
                    "zip": zip,
                }
            }

            # Execute the code in the restricted environment
            exec_locals = {}
            exec(code, restricted_globals, exec_locals)

            # If the code produces a result, we return that as output
            if "result" in exec_locals:
                return str(exec_locals["result"])
            else:
                return "❌ The code did not produce a result."

        except Exception as e:
            return f"❌ Error executing code: {str(e)}"


class ArxivSearchTool(Tool):
    name = "arxiv_search"
    description = """Searches arXiv for academic papers and returns structured information including titles, authors, publication dates, and abstracts. Ideal for finding scientific research on specific topics."""

    inputs = {
        "query": {
            "type": "string",
            "description": "A research-related query string (e.g., 'Superstring Cosmology')",
        }
    }
    output_type = "string"

    def forward(self, query: str) -> str:
        max_results = 10

        try:
            search_docs = ArxivLoader(
                query=query, load_max_docs=max_results, load_all_available_meta=True
            ).load()
        except Exception as e:
            return f"❌ Arxiv search failed: {e}"

        if not search_docs:
            return "No results found for your query."

        output_lines = []
        for idx, doc in enumerate(search_docs):
            meta = getattr(doc, "metadata", {}) or {}
            content = getattr(doc, "page_content", "").strip()

            output_lines.append(f"πŸ” RESULT {idx + 1}")
            output_lines.append(f"Title        : {meta.get('Title', '[No Title]')}")
            output_lines.append(f"Authors      : {meta.get('Authors', '[No Authors]')}")
            output_lines.append(f"Published    : {meta.get('Published', '[No Date]')}")
            output_lines.append(f"Summary      : {meta.get('Summary', '[No Summary]')}")
            output_lines.append(f"Entry ID     : {meta.get('entry_id', '[N/A]')}")
            # output_lines.append(f"First Pub.   : {meta.get('published_first_time', '[N/A]')}")
            # output_lines.append(f"Comment      : {meta.get('comment', '[N/A]')}")
            output_lines.append(f"DOI          : {meta.get('doi', '[N/A]')}")
            # output_lines.append(f"Journal Ref  : {meta.get('journal_ref', '[N/A]')}")
            # output_lines.append(f"Primary Cat. : {meta.get('primary_category', '[N/A]')}")
            # output_lines.append(f"Categories   : {', '.join(meta.get('categories', [])) or '[N/A]'}")
            output_lines.append(
                f"Links        : {', '.join(meta.get('links', [])) or '[N/A]'}"
            )

            if content:
                preview = content[:30] + ("..." if len(content) > 30 else "")
                output_lines.append(f"Content      : {preview}")

            output_lines.append("")  # spacing between results

        return "\n".join(output_lines).strip()