File size: 12,322 Bytes
b69b087
 
 
ef7a70c
 
b69b087
ef7a70c
b69b087
 
ef7a70c
b69b087
 
 
 
 
 
 
ef7a70c
b69b087
 
 
ef7a70c
 
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
ef7a70c
b69b087
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
ef7a70c
 
b69b087
 
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7a70c
 
b69b087
 
ef7a70c
 
 
b69b087
ef7a70c
b69b087
 
 
 
 
 
ef7a70c
 
 
 
b69b087
 
ef7a70c
b69b087
 
ef7a70c
 
b69b087
ef7a70c
 
b69b087
 
 
 
 
 
ef7a70c
b69b087
 
 
 
ef7a70c
b69b087
ef7a70c
b69b087
ef7a70c
b69b087
ef7a70c
b69b087
 
 
ef7a70c
b69b087
 
 
 
 
 
 
ef7a70c
b69b087
 
 
 
 
 
 
 
ef7a70c
 
 
 
b69b087
 
ef7a70c
b69b087
ef7a70c
 
b69b087
 
 
ef7a70c
b69b087
 
ef7a70c
b69b087
 
 
 
ef7a70c
b69b087
 
 
ef7a70c
b69b087
ef7a70c
b69b087
ef7a70c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import re
import tempfile
import traceback

import fitz  # PyMuPDF
import pandas as pd
import requests
from smolagents import Tool


class DownloadFileFromTaskTool(Tool):
    name = "download_file_from_task"
    description = """Downloads a file for a GAIA task ID and saves it in a temporary directory. 
    Use this when question requires information from a mentioned file, before reading a file."""

    inputs = {
        "task_id": {"type": "string", "description": "The GAIA task ID (REQUIRED)."},
        "filename": {
            "type": "string",
            "description": "Optional custom filename to save the file as (e.g., 'data.xlsx').",
            "nullable": True,
        },
    }
    output_type = "string"

    def forward(self, task_id: str, filename: str = None) -> str:
        if not task_id or not re.match(r"^[0-9a-f\-]{36}$", task_id):
            return "❌ Invalid or missing task_id."

        file_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
        try:
            response = requests.get(file_url, timeout=15)
            if response.status_code == 404:
                return "⚠️ No file found for this task."
            response.raise_for_status()

            # Try extracting filename and extension from header
            disposition = response.headers.get("content-disposition", "")
            header_filename_match = re.search(r'filename="(.+?)"', disposition)
            ext = ""
            if header_filename_match:
                ext = os.path.splitext(header_filename_match.group(1))[1]

            # Final filename logic
            if not filename:
                filename = f"{task_id}{ext or '.bin'}"

            temp_dir = tempfile.mkdtemp()
            file_path = os.path.join(temp_dir, filename)

            with open(file_path, "wb") as f:
                f.write(response.content)

            print(f"File saved at: {file_path}")
            return file_path
        except Exception as e:
            return f"❌ Error: {e}"


class ReadFileContentTool(Tool):
    name = "read_file_content"
    description = """Reads and returns the content of a file. Use after downloading a file using `download_file_from_task`."""

    inputs = {
        "file_path": {"type": "string", "description": "Full path to a file to read."}
    }
    output_type = "string"

    def forward(self, file_path: str) -> str:
        if not os.path.exists(file_path):
            return f"❌ File does not exist: {file_path}"

        ext = os.path.splitext(file_path)[1].lower()

        try:
            if ext == ".txt":
                with open(file_path, "r", encoding="utf-8") as f:
                    return f.read()

            elif ext == ".csv":
                df = pd.read_csv(file_path)
                return df.head().to_string(index=False)

            elif ext == ".xlsx":
                df = pd.read_excel(file_path)
                return df.head().to_string(index=False)

            elif ext == ".pdf":
                doc = fitz.open(file_path)
                text = ""
                for page in doc:
                    text += page.get_text()
                doc.close()
                return text.strip() or "⚠️ PDF contains no readable text."

            elif ext == ".json":
                with open(file_path, "r", encoding="utf-8") as f:
                    return f.read()

            elif ext == ".py":
                with open(file_path, "r", encoding="utf-8") as f:
                    return f.read()

            elif ext in [".mp3", ".wav"]:
                return f"ℹ️ Audio file detected: {os.path.basename(file_path)}. Use audio processing tool if needed."

            elif ext in [".mp4", ".mov", ".avi"]:
                return f"ℹ️ Video file detected: {os.path.basename(file_path)}. Use video analysis tool if available."

            else:
                return f"ℹ️ Unsupported file type: {ext}. File saved at {file_path}"

        except Exception as e:
            return f"❌ Could not read {file_path}: {e}"


class GetWikipediaInfoTool(Tool):
    name = "get_wikipedia_info"
    description = """Fetches a short summary about a topic from Wikipedia.
Use this when a user asks for background information, an explanation, or context on a well-known subject."""

    inputs = {
        "topic": {
            "type": "string",
            "description": "The topic to search for on Wikipedia.",
        }
    }
    output_type = "string"

    def forward(self, topic: str) -> str:
        print(f"EXECUTING TOOL: get_wikipedia_info(topic='{topic}')")
        try:
            search_url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={topic}&format=json"
            search_response = requests.get(search_url, timeout=10)
            search_response.raise_for_status()
            search_data = search_response.json()

            if not search_data.get("query", {}).get("search", []):
                return f"No Wikipedia info for '{topic}'."

            page_id = search_data["query"]["search"][0]["pageid"]

            content_url = (
                f"https://en.wikipedia.org/w/api.php?action=query&prop=extracts&"
                f"exintro=1&explaintext=1&pageids={page_id}&format=json"
            )
            content_response = requests.get(content_url, timeout=10)
            content_response.raise_for_status()
            content_data = content_response.json()

            extract = content_data["query"]["pages"][str(page_id)]["extract"]
            if len(extract) > 1500:
                extract = extract[:1500] + "..."

            result = f"Wikipedia summary for '{topic}':\n{extract}"
            print(f"-> Tool Result (Wikipedia): {result[:100]}...")
            return result

        except Exception as e:
            print(f"❌ Error in get_wikipedia_info: {e}")
            traceback.print_exc()
            return f"Error wiki: {e}"


class VisitWebpageTool(Tool):
    name = "visit_webpage"
    description = """
    Visits a given URL and returns structured page content including title, metadata, headings, paragraphs,
    tables, lists, and links.
    """

    inputs = {
        "url": {
            "type": "string",
            "description": "The full URL of the webpage to visit.",
        }
    }
    output_type = "string"

    def forward(self, url: str) -> str:
        try:
            import json

            import requests
            from bs4 import BeautifulSoup

            response = requests.get(url, timeout=10)
            response.raise_for_status()
            soup = BeautifulSoup(response.text, "html.parser")

            def clean(text):
                return " ".join(text.strip().split())

            def extract_tables(soup):
                tables_data = []
                for table in soup.find_all("table"):
                    headers = [clean(th.get_text()) for th in table.find_all("th")]
                    rows = []
                    for row in table.find_all("tr"):
                        cells = [clean(td.get_text()) for td in row.find_all("td")]
                        if cells:
                            rows.append(cells)
                    if headers and rows:
                        tables_data.append({"headers": headers, "rows": rows})
                return tables_data

            def extract_lists(soup):
                all_lists = []
                for ul in soup.find_all("ul"):
                    items = [clean(li.get_text()) for li in ul.find_all("li")]
                    if items:
                        all_lists.append(items)
                for ol in soup.find_all("ol"):
                    items = [clean(li.get_text()) for li in ol.find_all("li")]
                    if items:
                        all_lists.append(items)
                return all_lists

            def extract_meta(soup):
                metas = {}
                for meta in soup.find_all("meta"):
                    name = meta.get("name") or meta.get("property")
                    content = meta.get("content")
                    if name and content:
                        metas[name.lower()] = clean(content)
                return metas

            result = {
                "title": clean(soup.title.string) if soup.title else None,
                "meta": extract_meta(soup),
                "headings": {
                    "h1": [clean(h.get_text()) for h in soup.find_all("h1")],
                    "h2": [clean(h.get_text()) for h in soup.find_all("h2")],
                    "h3": [clean(h.get_text()) for h in soup.find_all("h3")],
                },
                "paragraphs": [clean(p.get_text()) for p in soup.find_all("p")],
                "lists": extract_lists(soup),
                "tables": extract_tables(soup),
                "links": [
                    {"text": clean(a.get_text()), "href": a["href"]}
                    for a in soup.find_all("a", href=True)
                ],
            }

            return json.dumps(result, indent=2)

        except Exception as e:
            return f"❌ Failed to fetch or parse webpage: {str(e)}"


class TranscribeAudioTool(Tool):
    name = "transcribe_audio"
    description = (
        """Transcribes spoken audio (e.g. voice memos, lectures) into plain text."""
    )

    inputs = {"file_path": {"type": "string", "description": "Path to an audio file."}}
    output_type = "string"

    def forward(self, file_path: str) -> str:
        try:
            import os
            import tempfile

            import speech_recognition as sr
            from pydub import AudioSegment

            # Initialize recognizer
            recognizer = sr.Recognizer()

            # Convert to WAV if not already (needed for speech_recognition)
            file_ext = os.path.splitext(file_path)[1].lower()

            if file_ext != ".wav":
                # Create temp WAV file
                temp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name

                # Convert to WAV using pydub
                audio = AudioSegment.from_file(file_path)
                audio.export(temp_wav, format="wav")
                audio_path = temp_wav
            else:
                audio_path = file_path

            # Transcribe audio using Google's speech recognition
            with sr.AudioFile(audio_path) as source:
                audio_data = recognizer.record(source)
                transcript = recognizer.recognize_google(audio_data)

            # Clean up temp file if created
            if file_ext != ".wav" and os.path.exists(temp_wav):
                os.remove(temp_wav)

            return transcript.strip()

        except Exception as e:
            return f"❌ Transcription failed: {str(e)}"


class TranscibeVideoFileTool(Tool):
    name = "transcribe_video"
    description = """Transcribes speech from a video file. Use this to understand video lectures, tutorials, or visual demos."""

    inputs = {
        "file_path": {
            "type": "string",
            "description": "Path to the video file (e.g., .mp4, .mov).",
        }
    }
    output_type = "string"

    def forward(self, file_path: str) -> str:
        try:
            import os
            import tempfile

            import moviepy.editor as mp
            import speech_recognition as sr

            # Extract audio from video
            video = mp.VideoFileClip(file_path)

            # Create temporary audio file
            temp_audio = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name

            # Extract audio to WAV format (required for speech_recognition)
            video.audio.write_audiofile(temp_audio, verbose=False, logger=None)
            video.close()

            # Initialize recognizer
            recognizer = sr.Recognizer()

            # Transcribe audio
            with sr.AudioFile(temp_audio) as source:
                audio_data = recognizer.record(source)
                transcript = recognizer.recognize_google(audio_data)

            # Clean up temp file
            if os.path.exists(temp_audio):
                os.remove(temp_audio)

            return transcript.strip()

        except Exception as e:
            return f"❌ Video processing failed: {str(e)}"