Spaces:
Sleeping
Sleeping
File size: 11,265 Bytes
b69b087 ef7a70c b69b087 75d27b2 ef7a70c b69b087 ef7a70c 75d27b2 b69b087 35c8e46 b69b087 ef7a70c 35c8e46 b69b087 75d27b2 b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c 35c8e46 b69b087 ef7a70c b69b087 ef7a70c 35c8e46 b69b087 ef7a70c b69b087 0c43797 b69b087 ef7a70c 35c8e46 b69b087 0c43797 b69b087 ef7a70c 35c8e46 b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 75d27b2 b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c 2525daf ef7a70c b69b087 3cdcf43 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c 75d27b2 b69b087 ef7a70c b69b087 ef7a70c b69b087 3cdcf43 ef7a70c 3cdcf43 b69b087 3cdcf43 ef7a70c b69b087 ef7a70c b69b087 ef7a70c b69b087 ef7a70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
from dotenv import load_dotenv
# Import models from SmolaAgents
from smolagents import CodeAgent, LiteLLMModel, OpenAIServerModel
# Import SmolaAgents tools
from smolagents.default_tools import FinalAnswerTool, PythonInterpreterTool
# Import custom tools
from tools import (
AddDocumentToVectorStoreTool,
ArxivSearchTool,
DownloadFileFromLinkTool,
DuckDuckGoSearchTool,
QueryVectorStoreTool,
ReadFileContentTool,
TranscibeVideoFileTool,
TranscribeAudioTool,
VisitWebpageTool,
WikipediaSearchTool,
image_question_answering
)
# Import utility functions
from utils import extract_final_answer, replace_tool_mentions
class BoomBot:
def __init__(self, provider="meta"):
"""
Initialize the BoomBot with the specified provider.
Args:
provider (str): The model provider to use (e.g., "groq", "qwen", "gemma", "anthropic", "deepinfra", "meta")
"""
load_dotenv()
self.provider = provider
self.model = self._initialize_model()
self.agent = self._create_agent()
def _initialize_model(self):
"""
Initialize the appropriate model based on the provider.
Returns:
The initialized model object
"""
if self.provider == "qwen":
qwen_model = "ollama_chat/qwen3:8b"
return LiteLLMModel(
model_id=qwen_model,
device="cuda",
num_ctx=32768,
temperature=0.6,
top_p=0.95,
)
elif self.provider == "gemma":
gemma_model = "ollama_chat/gemma3:12b-it-qat"
return LiteLLMModel(
model_id=gemma_model,
num_ctx=65536,
temperature=1.0,
device="cuda",
top_k=64,
top_p=0.95,
min_p=0.0,
)
elif self.provider == "anthropic":
model_id = "anthropic/claude-3-5-sonnet-latest"
return LiteLLMModel(model_id=model_id, temperature=0.6, max_tokens=8192)
elif self.provider == "deepinfra":
deepinfra_model = "Qwen/Qwen3-235B-A22B"
return OpenAIServerModel(
model_id=deepinfra_model,
api_base="https://api.deepinfra.com/v1/openai",
# api_key=os.environ["DEEPINFRA_API_KEY"],
flatten_messages_as_text=True,
max_tokens=8192,
temperature=0.1,
)
elif self.provider == "meta":
meta_model = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
return OpenAIServerModel(
model_id=meta_model,
api_base="https://api.deepinfra.com/v1/openai",
# api_key=os.environ["DEEPINFRA_API_KEY"],
flatten_messages_as_text=True,
max_tokens=8192,
temperature=0.7,
)
elif self.provider == "groq":
# Default to use groq's claude-3-opus or llama-3
model_id = "claude-3-opus-20240229"
return LiteLLMModel(model_id=model_id, temperature=0.7, max_tokens=8192)
else:
raise ValueError(f"Unsupported provider: {self.provider}")
def _create_agent(self):
"""
Create and configure the agent with all necessary tools.
Returns:
The configured CodeAgent
"""
# Initialize tools
download_file = DownloadFileFromLinkTool()
read_file_content = ReadFileContentTool()
visit_webpage = VisitWebpageTool()
transcribe_video = TranscibeVideoFileTool()
transcribe_audio = TranscribeAudioTool()
get_wikipedia_info = WikipediaSearchTool()
web_searcher = DuckDuckGoSearchTool()
arxiv_search = ArxivSearchTool()
add_doc_vectorstore = AddDocumentToVectorStoreTool()
retrieve_doc_vectorstore = QueryVectorStoreTool()
# SmolaAgents default tools
python_interpreter = PythonInterpreterTool()
final_answer = FinalAnswerTool()
# Combine all tools
agent_tools = [
web_searcher,
download_file,
read_file_content,
visit_webpage,
transcribe_video,
transcribe_audio,
get_wikipedia_info,
arxiv_search,
add_doc_vectorstore,
retrieve_doc_vectorstore,
image_question_answering,
python_interpreter,
final_answer,
]
# Additional imports for the Python interpreter
additional_imports = [
"json",
"os",
"glob",
"pathlib",
"pandas",
"numpy",
"matplotlib",
"seaborn",
"sklearn",
"tqdm",
"argparse",
"pickle",
"io",
"re",
"datetime",
"collections",
"math",
"random",
"csv",
"zipfile",
"itertools",
"functools",
]
# Create the agent
agent = CodeAgent(
tools=agent_tools,
max_steps=12,
model=self.model,
add_base_tools=False,
stream_outputs=True,
additional_authorized_imports=additional_imports,
)
# Modify the system prompt
modified_prompt = replace_tool_mentions(agent.system_prompt)
agent.system_prompt = modified_prompt
return agent
def _get_system_prompt(self):
"""
Return the system prompt for the agent.
Returns:
str: The system prompt
"""
return """
YOUR BEHAVIOR GUIDELINES:
• Do NOT make unfounded assumptions—always ground answers in reliable sources or search results.
• For math or puzzles: break the problem into code/math, then solve programmatically.
RESEARCH WORKFLOW (in rough priority order):
1. SEARCH
- Try web_search, wikipedia_search, or arxiv_search first.
- Refine your query rather than repeating the exact same terms.
- If one search tool yields insufficient info, switch to another before downloading.
2. VISIT
- Use visit_webpage to extract and read page content when a promising link appears after one of the SEARCH tools.
- For each visited link, also download the file and add to the vector store, you might need to query this later, especially if you have a lot of search results.
3. EVALUATE
- ✅ If the page or search snippet fully answers the question, respond immediately.
- ❌ If not, move on to deeper investigation.
4. DOWNLOAD
- Use download_file_from_link tool on relevant links found (yes you can download webpages as html).
- For arXiv papers, target the /pdf/ or DOI link (e.g https://arxiv.org/pdf/2011.10672).
-
5. INDEX & QUERY
- Add downloaded documents to the vector store with add_document_to_vector_store.
- Use query_downloaded_documents for detailed answers.
6. READ
- You have access to a read_file_content tool to read most types of files. You can also directly interact with downloaded files in your python code (do this for csv files and excel files)
FALLBACK & ADAPTATION:
• If a tool fails, reformulate your query or try a different search method before dropping to download.
• If a tool fails multiple times, try a different tool.
• For arXiv: you might discover a paper link via web_search tool and then directly use download_file_from_link tool
COMMON TOOL CHAINS (conceptual outlines):
These are just guidelines, each task might require a unique workflow.
A tool can provide useful information for the task, it will not always contain the answer. You need to work to get to a final_answer that makes sense.
• FACTUAL Qs:
web_search → final_answer
• CURRENT EVENTS:
To have some summary information use web_search, that might output a promising website to visit and read content from using (visit_webpage or download_file_from_link and read_file_content)
web_search → visit_webpage → final_answer
• DOCUMENT-BASED Qs:
web_search → download_file_from_link → add_document_to_vector_store → query_downloaded_documents → final_answer
• ARXIV PAPERS:
The arxiv search tool provides a list of results with summary content, to inspect the whole paper you need to download it with download_file_from_link tool.
arxiv_search → download_file_from_link → read_file_content
If that fails
arxiv_search → download_file_from_link → add_document_to_vector_store → query_downloaded_documents
• MEDIA ANALYSIS:
download_file_from_link → transcribe_video/transcribe_audio/describe_image → final_answer
FINAL ANSWER FORMAT:
- Begin with "FINAL ANSWER: "
- Number → digits only (e.g., 42)
- String → exact text (e.g., Pope Francis)
- List → comma-separated, one space (e.g., 2, 3, 4)
- Conclude with: FINAL ANSWER: <your_answer>
"""
def run(self, question: str, task_id: str, to_download) -> str:
"""
Run the agent with the given question, task_id, and download flag.
Args:
question (str): The question or task for the agent to process
task_id (str): A unique identifier for the task
to_download (Bool): Flag indicating whether to download resources
Returns:
str: The agent's response
"""
prompt = self._get_system_prompt()
# Task introduction
prompt += "\nHere is the Task you need to solve:\n\n"
prompt += f"Task: {question}\n\n"
# Include download instructions if applicable
if to_download:
link = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
prompt += (
"IMPORTANT: Before solving the task, you must download a required file.\n"
f"Use the `download_file_from_link` tool with this link: {link}\n"
"After downloading, use the appropriate tool to read or process the file "
"before attempting to solve the task.\n\n"
)
# Run the agent with the given question
result = self.agent.generate_response(question)
# Extract the final answer from the result
final_answer = extract_final_answer(result)
return final_answer
# Example of how to use this code (commented out)
# if __name__ == "__main__":
# agent = BasicAgent()
# response = agent("What is the current population of Tokyo?", "population_query", True)
# print(f"Response: {response}")
|