File size: 14,856 Bytes
10e9b7d c48121b 10e9b7d eccf8e4 7d65c66 3c4371f c48121b 10e9b7d e80aab9 c48121b 4021bf3 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f c48121b e80aab9 c48121b 7d65c66 c48121b 31243f4 c48121b d70b82d c48121b 31243f4 c48121b 7d65c66 c48121b 31243f4 c48121b 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 c48121b 31243f4 c48121b e80aab9 3c4371f e80aab9 c48121b 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 c48121b e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 61feb08 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 c48121b 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import json
from dotenv import load_dotenv
import gradio as gr
import requests
import inspect
import pandas as pd
from agent import BasicAgent
import time
from datetime import datetime
# Load environment variables from .env file
load_dotenv()
# --- Constants ---
DEFAULT_API_URL = os.getenv('DEFAULT_API_URL', "https://agents-course-unit4-scoring.hf.space")
CHECKPOINT_FILE = "agent_checkpoint.json"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Check for existing checkpoint
checkpoint_data = None
if os.path.exists(CHECKPOINT_FILE):
try:
with open(CHECKPOINT_FILE, 'r') as f:
checkpoint_data = json.load(f)
print(f"Found checkpoint with {len(checkpoint_data.get('questions', []))} questions and {len(checkpoint_data.get('answers', []))} answers")
except Exception as e:
print(f"Error loading checkpoint: {e}")
# If checkpoint is corrupt, remove it
try:
os.remove(CHECKPOINT_FILE)
except:
pass
checkpoint_data = None
# Initialize results tracking
results_log = []
answers_payload = []
if checkpoint_data:
# If we have a checkpoint, use it
questions_data = checkpoint_data.get('questions', [])
# Load any answers we already have
existing_answers = checkpoint_data.get('answers', [])
existing_answers_dict = {a.get('task_id'): a.get('submitted_answer') for a in existing_answers}
print(f"Loaded {len(existing_answers)} existing answers from checkpoint")
# Load existing results log
if 'results_log' in checkpoint_data:
results_log = checkpoint_data.get('results_log', [])
# We'll use the checkpoint data
print(f"Resuming from checkpoint with {len(questions_data)} questions")
else:
# 2. Fetch Questions from server
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
# Save questions to checkpoint immediately
save_checkpoint(questions_data, [], username, [])
# No existing answers
existing_answers_dict = {}
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent on questions we haven't answered yet
print(f"Running agent on questions...")
for idx, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Check if the question has an associated file and prepend information
file_name = item.get("file_name")
if file_name and file_name != "":
file_url = f"{api_url}/files/{task_id}"
question_with_file_info = f"For this task there is file available, with name {file_name}, it's possible to download it from {file_url}\n\n{question_text}"
question_text = question_with_file_info
# Skip if we already have an answer for this question
if task_id in existing_answers_dict:
submitted_answer = existing_answers_dict[task_id]
print(f"Using cached answer for task_id {task_id}")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
# Check if we already have this in results_log
if not any(r.get("Task ID") == task_id for r in results_log):
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
continue
try:
print(f"Processing question {idx+1}/{len(questions_data)}: {task_id}")
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# Save checkpoint after each answer
save_checkpoint(questions_data, answers_payload, username, results_log)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
# Save checkpoint even if there was an error
save_checkpoint(questions_data, answers_payload, username, results_log)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
# Check if we're in production mode
is_production = os.getenv('PRODUCTION_RUN', 'FALSE').upper() == 'TRUE'
if is_production:
print("Running in PRODUCTION mode - making actual submission")
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
else:
print("Running in SIMULATION mode - generating mock response")
# Simulate a successful response
result_data = {
"username": username,
"score": 85,
"correct_count": len(answers_payload) - 2, # Simulate some incorrect answers
"total_attempted": len(answers_payload),
"message": "Simulation mode: This is a mock response"
}
final_status = (
f"Submission {'Successful' if is_production else 'Simulated'}!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print(f"Submission {'completed' if is_production else 'simulated'} successfully.")
# Delete checkpoint file after successful submission
if os.path.exists(CHECKPOINT_FILE):
try:
os.remove(CHECKPOINT_FILE)
print(f"Checkpoint file removed after successful submission")
except Exception as e:
print(f"Warning: Could not remove checkpoint file: {e}")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def save_checkpoint(questions_data, answers_payload, username, results_log):
"""Save checkpoint data to a local file."""
try:
checkpoint_data = {
'questions': questions_data,
'answers': answers_payload,
'username': username,
'timestamp': time.time(),
'results_log': results_log
}
with open(CHECKPOINT_FILE, 'w') as f:
json.dump(checkpoint_data, f)
print(f"Checkpoint saved with {len(questions_data)} questions and {len(answers_payload)} answers")
except Exception as e:
print(f"Error saving checkpoint: {e}")
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_raw = os.getenv("SPACE_ID", "")
# Ensure proper SPACE_ID format with username/repo
if not space_id_raw:
# Default if completely missing
space_id_startup = "martinsu/Final_Assignment_Template"
elif "/" in space_id_raw and not space_id_raw.startswith("/"):
# Already has proper username/repo format
space_id_startup = space_id_raw
elif space_id_raw.startswith("/"):
# Has a leading slash but missing username
space_id_startup = f"martinsu{space_id_raw}"
else:
# Just repo name without username
space_id_startup = f"martinsu/{space_id_raw}"
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
# Check for existing checkpoint
if os.path.exists(CHECKPOINT_FILE):
try:
with open(CHECKPOINT_FILE, 'r') as f:
checkpoint_data = json.load(f)
print(f"✅ Checkpoint found with {len(checkpoint_data.get('questions', []))} questions and {len(checkpoint_data.get('answers', []))} answers")
print(f" Created at: {datetime.fromtimestamp(checkpoint_data.get('timestamp', 0)).strftime('%Y-%m-%d %H:%M:%S')}")
except Exception as e:
print(f"⚠️ Checkpoint file exists but could not be read: {e}")
else:
print("ℹ️ No checkpoint file found. Will start fresh.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |