Spaces:
Sleeping
Sleeping
File size: 1,146 Bytes
2014880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import os
import query_index
import datasets
import sentence_transformers
def query(text, k=5):
model = sentence_transformers.SentenceTransformer(
"dangvantuan/sentence-camembert-large", device="cpu")
dataset = datasets.load_dataset("json", data_files=["./data/dataset.json"], split="train")
dataset.load_faiss_index("embeddings", "index.faiss")
query_embedding = model.encode(text)
_, retrieved_examples = dataset.get_nearest_examples(
"embeddings",
query_embedding,
k=k,
)
for text, start, end, title, url in zip(
retrieved_examples["text"],
retrieved_examples["start"],
retrieved_examples["end"],
retrieved_examples["title"],
retrieved_examples["url"],
):
start = start
end = end
print(f"title: {title}")
print(f"transcript: [{str(start)+' ====> '+str(end)}] {text}")
print(f"link: {url}")
print("*" * 10)
iface = gr.Interface(
fn=query,
inputs='text',
outputs='text',
examples=[["Qu'est ce qui t'a fait le plus progresser?"]]
)
iface.launch() |