Spaces:
Paused
Paused
File size: 1,273 Bytes
b49b83b d8b2749 11a35d1 b49b83b 11a35d1 b49b83b 11a35d1 46d9167 3ea1454 11a35d1 46d9167 b49b83b 11a35d1 3ea1454 11a35d1 46d9167 11a35d1 b49b83b 3ea1454 b49b83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import gradio as gr
# Model loading
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
adapter_name = "adarsh3601/my_gemma3_pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map={"": device},
torch_dtype=torch.float16,
load_in_4bit=True
)
# Load tokenizer and adapter
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, adapter_name)
model.to(device)
# Chat function
def chat(message):
inputs = tokenizer(message, return_tensors="pt")
# Move tensors to the correct device and convert only float tensors to half
for k in inputs:
if inputs[k].dtype == torch.float32:
inputs[k] = inputs[k].to(device).half()
else:
inputs[k] = inputs[k].to(device)
outputs = model.generate(**inputs, max_new_tokens=150, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Launch Gradio app
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot")
iface.launch()
|