Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,28 +3,32 @@ from peft import PeftModel
|
|
3 |
import torch
|
4 |
from flask import Flask, request, jsonify
|
5 |
from flask_cors import CORS
|
|
|
6 |
|
7 |
# Setup
|
8 |
app = Flask(__name__)
|
9 |
CORS(app)
|
10 |
|
11 |
# Model details
|
12 |
-
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
|
13 |
adapter_name = "adarsh3601/my_gemma3_pt"
|
14 |
|
15 |
-
#
|
|
|
|
|
|
|
16 |
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
base_model_name,
|
18 |
-
device_map="
|
19 |
-
|
20 |
-
|
21 |
)
|
22 |
|
23 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
24 |
-
|
25 |
-
# Load adapter on top of base model
|
26 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
27 |
-
|
|
|
|
|
28 |
|
29 |
@app.route("/chat", methods=["POST"])
|
30 |
def chat():
|
@@ -32,13 +36,14 @@ def chat():
|
|
32 |
data = request.json
|
33 |
prompt = data.get("message", "")
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
**inputs,
|
39 |
-
max_new_tokens=150,
|
40 |
-
do_sample=True
|
41 |
-
)
|
42 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
|
44 |
return jsonify({"response": response})
|
|
|
3 |
import torch
|
4 |
from flask import Flask, request, jsonify
|
5 |
from flask_cors import CORS
|
6 |
+
from huggingface_hub import login
|
7 |
|
8 |
# Setup
|
9 |
app = Flask(__name__)
|
10 |
CORS(app)
|
11 |
|
12 |
# Model details
|
13 |
+
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit" # The model you are using
|
14 |
adapter_name = "adarsh3601/my_gemma3_pt"
|
15 |
|
16 |
+
# Use CUDA for GPU acceleration (Nvidia T4 small supports CUDA)
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
# Load the base model with quantization enabled for the GPU
|
20 |
base_model = AutoModelForCausalLM.from_pretrained(
|
21 |
base_model_name,
|
22 |
+
device_map={"": device},
|
23 |
+
torch_dtype=torch.float16, # Use float16 for efficient GPU usage
|
24 |
+
load_in_4bit=True # Enable 4-bit quantization for reduced memory usage
|
25 |
)
|
26 |
|
27 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
|
|
|
|
28 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
29 |
+
|
30 |
+
# Move model to the GPU
|
31 |
+
model.to(device)
|
32 |
|
33 |
@app.route("/chat", methods=["POST"])
|
34 |
def chat():
|
|
|
36 |
data = request.json
|
37 |
prompt = data.get("message", "")
|
38 |
|
39 |
+
# Tokenize the input and move it to GPU
|
40 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
41 |
+
inputs = {k: v.to(device).half() for k, v in inputs.items()} # Ensure inputs are in float16
|
42 |
+
|
43 |
+
# Generate the response using the model
|
44 |
+
outputs = model.generate(**inputs, max_new_tokens=150, do_sample=True)
|
45 |
|
46 |
+
# Decode the output and return the response
|
|
|
|
|
|
|
|
|
47 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
|
49 |
return jsonify({"response": response})
|