File size: 6,523 Bytes
beee9d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
A model worker executes the model.
"""
import argparse
import asyncio
import json
import time
import threading
import uuid

from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse
import requests
import torch
import uvicorn
from functools import partial

from mplug_docowl.utils import (build_logger, server_error_msg,
    pretty_print_semaphore)

from mplug_docowl.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,WORKER_HEART_BEAT_INTERVAL
from mplug_docowl.conversation import conv_templates, SeparatorStyle
from mplug_docowl.model.builder import load_pretrained_model
from mplug_docowl.mm_utils import load_image_from_base64, process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from mplug_docowl.processor import DocProcessor


from transformers import TextIteratorStreamer
from threading import Thread
from icecream import ic


GB = 1 << 30

worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0

model_semaphore = None


def heart_beat_worker(controller):

    while True:
        time.sleep(WORKER_HEART_BEAT_INTERVAL)
        controller.send_heart_beat()

        
class ModelWorker:
    def __init__(self, 
                 model_path, model_base, model_name,
                 resolution, anchors, add_global_img,
                 load_8bit, load_4bit, device):

        if model_path.endswith("/"):
            model_path = model_path[:-1]
        
        self.model_name = get_model_name_from_path(model_path)

        self.device = device
        logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")

        self.tokenizer, self.model, _, self.context_len = load_pretrained_model(
            model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
        
        self.resolution=resolution
        self.token_num_each_img = (self.resolution/14)*(self.resolution/14)/self.model.get_model().vision2text.conv_patch
        self.doc_image_processor = DocProcessor(image_size=resolution, anchors=anchors, add_global_img=add_global_img, add_textual_crop_indicator=True)
       

        self.is_multimodal = True


    @torch.inference_mode()
    def generate_stream(self, params):
        tokenizer, model = self.tokenizer, self.model

        prompt = params["prompt"]
        ori_prompt = prompt
        images = params.get("images", None)
        num_image_tokens = 0
        if images is not None and len(images) > 0 and self.is_multimodal:
            if len(images) > 0:
                
                images = [load_image_from_base64(image) for image in images]
                # docowl only support 1 image, so only keep the last image
                image = images[-1]
                assert prompt.count(DEFAULT_IMAGE_TOKEN) == 1

                images, patch_positions, prompt = self.doc_image_processor(images=image, query=prompt)
                images = images.to(self.model.device, dtype=torch.float16)
                patch_positions = patch_positions.to(self.model.device)

                replace_token = DEFAULT_IMAGE_TOKEN
                prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
                num_image_tokens = prompt.count(replace_token) * (self.token_num_each_img+1)
            else:
                images = None
                patch_positions = None
            image_args = {"images": images, "patch_positions":patch_positions}
        else:
            images = None
            image_args = {}

        temperature = float(params.get("temperature", 1.0))
        top_p = float(params.get("top_p", 1.0))
        # max_context_length = getattr(model.config, 'max_position_embeddings', 4096)
        max_context_length = 4096
        max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
        stop_str = params.get("stop", None)
        # do_sample = True if temperature > 0.001 else False
        do_sample = False

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)

        max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
        ic(max_context_length, input_ids.shape[-1], num_image_tokens, max_new_tokens)

        if max_new_tokens < 1:
            yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode()
            return

        thread = Thread(target=model.generate, kwargs=dict(
            inputs=input_ids,
            do_sample=do_sample,
            temperature=temperature,
            # top_p=top_p,
            max_new_tokens=max_new_tokens,
            streamer=streamer,
            stopping_criteria=[stopping_criteria],
            use_cache=True,
            **image_args
        ))
        thread.start()

        generated_text = ori_prompt
        for new_text in streamer:
            generated_text += new_text
            if generated_text.endswith(stop_str):
                generated_text = generated_text[:-len(stop_str)]
            # yield json.dumps({"text": generated_text, "error_code": 0}).encode()
            # replace < >  to [ ] to avoide <doc>,<md>,<ocr>,<bbox> are removed by web code
            yield json.dumps({"text": generated_text.replace('<','[').replace('>',']'), "error_code": 0}).encode()
            


    def generate_stream_gate(self, params):
        try:
            for x in self.generate_stream(params):
                yield x
        except ValueError as e:
            print("Caught ValueError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode()
        except torch.cuda.CudaError as e:
            print("Caught torch.cuda.CudaError:", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode()
        except Exception as e:
            print("Caught Unknown Error", e)
            ret = {
                "text": server_error_msg,
                "error_code": 1,
            }
            yield json.dumps(ret).encode()