Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,593 Bytes
2d63e52 88356be fb66618 7a37cfb 88356be 89b8c0b e4010d8 2d63e52 46edcf6 2d63e52 ad36776 e4010d8 ad36776 5da9cef 57c2a5d ad36776 9a4471c e4010d8 9a4471c 07a76f8 5582229 e4010d8 ad36776 a7a4e14 da19af6 a7a4e14 e4010d8 ad36776 07a76f8 ad36776 5582229 57c2a5d 5582229 ad36776 07a76f8 e4010d8 07a76f8 ad36776 07a76f8 ad36776 07a76f8 ad36776 07a76f8 ad36776 07a76f8 ad36776 07a76f8 5582229 07a76f8 ea604ea 07a76f8 ad36776 07a76f8 ad36776 07a76f8 ad36776 07a76f8 ad36776 07a76f8 ad36776 07a76f8 ad36776 37b41e9 ad36776 27c3fcd e4010d8 ad36776 efa8da2 5582229 ad36776 e4010d8 ad36776 7a70688 8666c72 ad36776 07a76f8 ad36776 e4010d8 8666c72 5582229 e4010d8 ad36776 bc46ee1 7a37cfb e20ac5c ad36776 e20ac5c ad36776 7a37cfb e4010d8 ad36776 e4010d8 ad36776 4ef6980 ad36776 4ef6980 ad36776 4ef6980 e20ac5c c9b1b1f e20ac5c ad36776 e20ac5c efa8da2 e20ac5c e4010d8 07a76f8 e20ac5c a7a4e14 e20ac5c e4010d8 e20ac5c e4010d8 e20ac5c e4010d8 e20ac5c e4010d8 e20ac5c e4010d8 e20ac5c e4010d8 07a76f8 e4010d8 ad36776 e4010d8 ad36776 e4010d8 07a76f8 ad36776 e4010d8 e20ac5c e4010d8 ad36776 e4010d8 ad36776 e4010d8 ad36776 e4010d8 7a37cfb e20ac5c e4010d8 e20ac5c e4010d8 ad36776 e4010d8 e20ac5c e4010d8 ad36776 e774464 e20ac5c ad36776 5e72e33 ad36776 e4010d8 bc46ee1 efa8da2 4fde691 1447899 ad36776 e4010d8 66e4ecd e4010d8 e20ac5c bc46ee1 e4010d8 4fde691 7a37cfb ad36776 27c3fcd ad36776 4fde691 efa8da2 e20ac5c efa8da2 ad36776 4fde691 ad36776 bc46ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import numpy as np
import gradio as gr
import spaces
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")
print("Loading finished.")
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
STYLE = """
.custom-container {
display: grid;
align-items: center;
margin: 0!important;
overflow: auto;
}
.prose ul ul {
font-size: 10px!important;
}
.prose li {
margin-bottom: 0!important;
}
.prose table {
margin-bottom: 0!important;
}
.prose td, th {
padding-left: 2px;
padding-right: 2px;
padding-top: 0;
padding-bottom: 0;
}
.tree {
padding: 0px;
margin: 0!important;
box-sizing: border-box;
font-size: 10px;
width: 100%;
height: auto;
text-align: center;
display:inline-block;
}
#root {
display: inline-grid!important;
width:auto!important;
min-width: 220px;
}
.tree ul {
padding-left: 20px;
position: relative;
transition: all 0.5s ease 0s;
display: flex;
flex-direction: column;
gap: 10px;
margin: 0px !important;
}
.tree li {
display: flex;
text-align: center;
list-style-type: none;
position: relative;
padding-left: 20px;
transition: all 0.5s ease 0s;
flex-direction: row;
justify-content: start;
align-items: center;
}
.tree li::before, .tree li::after {
content: "";
position: absolute;
left: 0px;
border-left: 1px solid var(--body-text-color);
width: 20px;
}
.tree li::before {
top: 0;
height:50%;
}
.tree li::after {
top: 50%;
height: 55%;
bottom: auto;
border-top: 1px solid var(--body-text-color);
}
.tree li:only-child::after, li:only-child::before {
display: none;
}
.tree li:first-child::before, .tree li:last-child::after {
border: 0 none;
}
.tree li:last-child::before {
border-bottom: 1px solid var(--body-text-color);
border-radius: 0px 0px 0px 5px;
-webkit-border-radius: 0px 0px 0px 5px;
-moz-border-radius: 0px 0px 0px 5px;
}
.tree li:first-child::after {
border-radius: 5px 0 0 0;
-webkit-border-radius: 5px 0 0 0;
-moz-border-radius: 5px 0 0 0;
}
.tree ul ul::before {
content: "";
position: absolute;
left: 0;
top: 50%;
border-top: 1px solid var(--body-text-color);
width: 20px;
height: 0;
}
.tree ul:has(> li:only-child)::before {
width:40px;
}
a:before {
border-right: 1px solid var(--body-text-color);
border-bottom: 1px solid var(--body-text-color);
content: "";
position: absolute;
width: 10px;
left: 0px;
height: 10px;
top: 50%;
margin-top: -5px;
margin-left: 6px;
transform: rotate(315deg);
}
.tree li a {
border: 1px solid var(--body-text-color);
padding: 5px;
border-radius: 5px;
text-decoration-line: none;
border-radius: 5px;
transition: .5s;
width: 280px;
display: flex;
align-items: center;
justify-content: space-around;
}
.tree li a span {
padding: 5px;
font-size: 12px;
text-transform: uppercase;
letter-spacing: 1px;
font-weight: 500;
}
/*Hover-Section*/
.tree li a:hover, .tree li a:hover+ul li a {
background: #ffedd5;
}
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
border-color: #7c2d12;
}
.chosen {
background-color: #ea580c;
width:auto!important;
}
"""
def clean(s):
return s.replace("\n", r"\n").replace("\t", r"\t")
def generate_markdown_table(
scores, previous_cumul_score, score_divider, top_k=4, chosen_tokens=None
):
markdown_table = """
<table>
<tr>
<th><b>Token</b></th>
<th><b>Step score</b></th>
<th><b>Total score</b></th>
</tr>"""
for token_idx in np.array(np.argsort(scores)[-top_k:])[::-1]:
token = tokenizer.decode([token_idx])
item_class = ""
if chosen_tokens and token in chosen_tokens:
item_class = "chosen"
markdown_table += f"""
<tr class={item_class}>
<td>{clean(token)}</td>
<td>{scores[token_idx]:.4f}</td>
<td>{(scores[token_idx] + previous_cumul_score)/score_divider:.4f}</td>
</tr>"""
markdown_table += """
</table>"""
return markdown_table
def generate_nodes(token_ix, node, step):
"""Recursively generate HTML for the tree nodes."""
token = tokenizer.decode([token_ix])
html_content = f" <li> <a href='#' class='{('chosen' if node.table is None else '')}'> <span> <b>{token_ix}:<br>{clean(token)}</b> </span> "
if node.table is not None:
html_content += node.table
html_content += "</a>"
if len(node.children.keys()) > 0:
html_content += "<ul> "
for token_ix, subnode in node.children.items():
html_content += generate_nodes(token_ix, subnode, step=step + 1)
html_content += "</ul>"
html_content += "</li>"
return html_content
def generate_html(start_sentence, original_tree):
html_output = f"""<div class="custom-container">
<div class="tree">
<ul>
<li> <a href='#' id='root'> <span> <b>{start_sentence}</b> </span> {original_tree.table} </a>"""
if len(original_tree.children.keys()) > 0:
html_output += "<ul> "
for token_ix, subnode in original_tree.children.items():
html_output += generate_nodes(token_ix, subnode, step=1)
html_output += "</ul>"
html_output += """
</ul>
</div>
</body>
"""
return html_output
import pandas as pd
from typing import Dict
from dataclasses import dataclass
@dataclass
class BeamNode:
cumulative_score: float
children_score_divider: float
table: str
current_sentence: str
children: Dict[int, "BeamNode"]
def generate_beams(start_sentence, scores, sequences, length_penalty):
sequences = sequences.cpu().numpy()
input_length = len(tokenizer([start_sentence], return_tensors="pt"))
original_tree = BeamNode(
cumulative_score=0,
table=None,
current_sentence=start_sentence,
children={},
children_score_divider=((input_length + 1) ** length_penalty),
)
n_beams = len(scores[0])
beam_trees = [original_tree] * n_beams
for step, step_scores in enumerate(scores):
(
top_token_indexes,
top_cumulative_scores,
beam_indexes,
current_completions,
top_tokens,
) = ([], [], [], [], [])
for beam_ix in range(n_beams):
current_beam = beam_trees[beam_ix]
# Get top cumulative scores for the current beam
current_top_token_indexes = list(
np.array(scores[step][beam_ix].argsort()[-n_beams:])[::-1]
)
top_token_indexes += current_top_token_indexes
top_cumulative_scores += list(
np.array(scores[step][beam_ix][current_top_token_indexes])
+ current_beam.cumulative_score
)
beam_indexes += [beam_ix] * n_beams
current_completions += [beam_trees[beam_ix].current_sentence] * n_beams
top_tokens += [tokenizer.decode([el]) for el in current_top_token_indexes]
top_df = pd.DataFrame.from_dict(
{
"token_index": top_token_indexes,
"cumulative_score": top_cumulative_scores,
"beam_index": beam_indexes,
"current_completions": current_completions,
"token": top_tokens,
}
)
maxes = top_df.groupby(["token_index", "current_completions"])[
"cumulative_score"
].idxmax()
top_df = top_df.loc[maxes]
# Sort all top probabilities and keep top n_beams
top_df_selected = top_df.sort_values("cumulative_score", ascending=False).iloc[
:n_beams
]
# Write the scores table - one per beam source?
# Edge case: if several beam indexes are actually on the same beam, the selected tokens by beam_index for the second one will be empty. So we reverse
for beam_ix in reversed(list(range(n_beams))):
current_beam = beam_trees[beam_ix]
selected_tokens = top_df_selected.loc[
top_df_selected["beam_index"] == beam_ix
]
markdown_table = generate_markdown_table(
step_scores[beam_ix, :],
current_beam.cumulative_score,
current_beam.children_score_divider,
chosen_tokens=list(selected_tokens["token"].values),
)
beam_trees[beam_ix].table = markdown_table
# Add new children for each beam
cumulative_scores = [beam.cumulative_score for beam in beam_trees]
for beam_ix in range(n_beams):
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
current_token_choice = tokenizer.decode([current_token_choice_ix])
# Update the source tree
source_beam_ix = int(top_df_selected.iloc[beam_ix]["beam_index"])
cumulative_score = (
cumulative_scores[source_beam_ix]
+ scores[step][source_beam_ix][current_token_choice_ix].numpy()
)
beam_trees[source_beam_ix].children[current_token_choice_ix] = BeamNode(
table=None,
children={},
current_sentence=beam_trees[source_beam_ix].current_sentence
+ current_token_choice,
cumulative_score=cumulative_score,
children_score_divider=((input_length + step + 1) ** length_penalty),
)
# Reassign all beams at once
beam_trees = [
beam_trees[int(top_df_selected.iloc[beam_ix]["beam_index"])]
for beam_ix in range(n_beams)
]
# Advance all beams by one token
for beam_ix in range(n_beams):
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
beam_trees[beam_ix] = beam_trees[beam_ix].children[current_token_choice_ix]
return original_tree
@spaces.GPU
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
inputs = tokenizer([input_text], return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
num_beams=number_beams,
num_return_sequences=number_beams,
return_dict_in_generate=True,
length_penalty=length_penalty,
output_scores=True,
do_sample=False,
)
markdown = "Output sequences:"
decoded_sequences = tokenizer.batch_decode(outputs.sequences)
for i, sequence in enumerate(decoded_sequences):
markdown += f"\n- {clean(sequence.replace('<s> ', ''))} (score {outputs.sequences_scores[i]:.2f})"
original_tree = generate_beams(
input_text,
outputs.scores[:],
outputs.sequences[:, :],
length_penalty,
)
html = generate_html(input_text, original_tree)
return html, markdown
with gr.Blocks(
theme=gr.themes.Soft(
text_size="lg", font=["monospace"], primary_hue=gr.themes.colors.yellow
),
css=STYLE,
) as demo:
gr.Markdown("""# Beam search visualizer
Play with the parameters below to understand how beam search decoding works!
#### Parameters:
- **Sentence to decode from**: the input sequence to your decoder.
- **Number of steps**: the number of tokens to generate
- **Number of beams**: the number of beams to use
- **Length penalty**: the length penalty to apply to outputs. `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences.
""")
text = gr.Textbox(label="Sentence to decode from", value="Conclusion: thanks a lot. This article was originally published on")
with gr.Row():
steps = gr.Slider(label="Number of steps", minimum=1, maximum=8, step=1, value=4)
beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
length_penalty = gr.Slider(label="Length penalty", minimum=-4, maximum=4, step=0.5, value=1)
button = gr.Button()
out_html = gr.Markdown()
out_markdown = gr.Markdown()
button.click(get_beam_search_html, inputs=[text, steps, beams, length_penalty], outputs=[out_html, out_markdown])
demo.launch() |