Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,28 +4,43 @@ import numpy as np
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
8 |
# True
|
9 |
if torch.cuda.is_available():
|
10 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
11 |
|
12 |
STYLE = """
|
13 |
-
.container {
|
14 |
width: 100%;
|
15 |
display: grid;
|
16 |
align-items: center;
|
17 |
margin: 0!important;
|
|
|
18 |
}
|
19 |
.prose ul ul {
|
20 |
margin: 0!important;
|
21 |
-
font-size:
|
22 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
.tree {
|
24 |
padding: 0px;
|
25 |
margin: 0!important;
|
26 |
box-sizing: border-box;
|
27 |
-
font-size:
|
28 |
width: 100%;
|
|
|
29 |
height: auto;
|
30 |
text-align: center;
|
31 |
}
|
@@ -34,13 +49,17 @@ STYLE = """
|
|
34 |
position: relative;
|
35 |
transition: .5s;
|
36 |
margin: 0!important;
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
.tree li {
|
39 |
display: inline-table;
|
40 |
text-align: center;
|
41 |
list-style-type: none;
|
42 |
position: relative;
|
43 |
-
padding: 10px;
|
44 |
transition: .5s;
|
45 |
}
|
46 |
.tree li::before, .tree li::after {
|
@@ -88,7 +107,7 @@ STYLE = """
|
|
88 |
}
|
89 |
.tree li a {
|
90 |
border: 1px solid #ccc;
|
91 |
-
padding:
|
92 |
display: inline-grid;
|
93 |
border-radius: 5px;
|
94 |
text-decoration-line: none;
|
@@ -96,10 +115,8 @@ STYLE = """
|
|
96 |
transition: .5s;
|
97 |
}
|
98 |
.tree li a span {
|
99 |
-
border: 1px solid #ccc;
|
100 |
-
border-radius: 5px;
|
101 |
color: #666;
|
102 |
-
padding:
|
103 |
font-size: 12px;
|
104 |
text-transform: uppercase;
|
105 |
letter-spacing: 1px;
|
@@ -109,30 +126,26 @@ STYLE = """
|
|
109 |
.tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a {
|
110 |
background: #c8e4f8;
|
111 |
color: #000;
|
112 |
-
border: 1px solid #94a0b4;
|
113 |
}
|
114 |
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
|
115 |
border-color: #94a0b4;
|
116 |
}
|
|
|
|
|
|
|
117 |
"""
|
118 |
|
119 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
120 |
-
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
121 |
-
|
122 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
123 |
-
print("Loading finished.")
|
124 |
-
|
125 |
|
126 |
-
def
|
127 |
-
"""Recursively generate HTML for the tree."""
|
128 |
|
129 |
-
html_content = f" <li> <a href='#'> <span> <b>{token}</b> </span> "
|
130 |
-
html_content += node
|
131 |
html_content += "</a>"
|
132 |
-
if len(node
|
133 |
html_content += "<ul> "
|
134 |
-
for token, subnode in node
|
135 |
-
html_content +=
|
136 |
html_content += "</ul>"
|
137 |
html_content += "</li>"
|
138 |
return html_content
|
@@ -144,9 +157,9 @@ def generate_markdown_table(scores, sequence_prob, top_k=4, chosen_tokens=None):
|
|
144 |
<tr>
|
145 |
<th><b>Token</b></th>
|
146 |
<th><b>Step score</b></th>
|
147 |
-
<th><b>
|
148 |
</tr>"""
|
149 |
-
for token_idx in np.argsort(scores)[-top_k:]:
|
150 |
token = tokenizer.decode([token_idx])
|
151 |
style = ""
|
152 |
if chosen_tokens and token in chosen_tokens:
|
@@ -162,50 +175,140 @@ def generate_markdown_table(scores, sequence_prob, top_k=4, chosen_tokens=None):
|
|
162 |
return markdown_table
|
163 |
|
164 |
|
165 |
-
def
|
166 |
-
|
|
|
167 |
<div class="tree">
|
168 |
<ul>"""
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
print(tokenizer.batch_decode(sequences))
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
185 |
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
markdown_table = generate_markdown_table(
|
188 |
-
step_scores[
|
189 |
-
|
|
|
190 |
)
|
191 |
-
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
#
|
196 |
-
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
@spaces.GPU
|
208 |
-
def
|
209 |
inputs = tokenizer([input_text], return_tensors="pt")
|
210 |
|
211 |
outputs = model.generate(
|
@@ -216,18 +319,18 @@ def get_tables(input_text, number_steps, number_beams):
|
|
216 |
return_dict_in_generate=True,
|
217 |
output_scores=True,
|
218 |
top_k=5,
|
219 |
-
|
220 |
-
do_sample=True,
|
221 |
)
|
222 |
-
print(outputs.sequences_scores)
|
223 |
|
224 |
-
|
225 |
input_text,
|
226 |
-
outputs.scores,
|
227 |
-
outputs.sequences[:,
|
228 |
-
outputs.beam_indices[:, :
|
229 |
)
|
230 |
-
|
|
|
|
|
231 |
|
232 |
|
233 |
with gr.Blocks(
|
@@ -241,6 +344,6 @@ with gr.Blocks(
|
|
241 |
beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
|
242 |
button = gr.Button()
|
243 |
out = gr.Markdown(label="Output")
|
244 |
-
button.click(
|
245 |
|
246 |
demo.launch()
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
9 |
+
|
10 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
11 |
+
print("Loading finished.")
|
12 |
+
|
13 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
14 |
# True
|
15 |
if torch.cuda.is_available():
|
16 |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
17 |
|
18 |
STYLE = """
|
19 |
+
.custom-container {
|
20 |
width: 100%;
|
21 |
display: grid;
|
22 |
align-items: center;
|
23 |
margin: 0!important;
|
24 |
+
overflow: scroll;
|
25 |
}
|
26 |
.prose ul ul {
|
27 |
margin: 0!important;
|
28 |
+
font-size: 10px!important;
|
29 |
}
|
30 |
+
.prose td, th {
|
31 |
+
padding-left: 2px;
|
32 |
+
padding-right: 2px;
|
33 |
+
padding-top: 0;
|
34 |
+
padding-bottom: 0;
|
35 |
+
}
|
36 |
+
|
37 |
.tree {
|
38 |
padding: 0px;
|
39 |
margin: 0!important;
|
40 |
box-sizing: border-box;
|
41 |
+
font-size: 10px;
|
42 |
width: 100%;
|
43 |
+
min-width: 2000px;
|
44 |
height: auto;
|
45 |
text-align: center;
|
46 |
}
|
|
|
49 |
position: relative;
|
50 |
transition: .5s;
|
51 |
margin: 0!important;
|
52 |
+
display: flex;
|
53 |
+
flex-direction: row;
|
54 |
+
justify-content: center;
|
55 |
+
gap:10px;
|
56 |
}
|
57 |
.tree li {
|
58 |
display: inline-table;
|
59 |
text-align: center;
|
60 |
list-style-type: none;
|
61 |
position: relative;
|
62 |
+
padding-top: 10px;
|
63 |
transition: .5s;
|
64 |
}
|
65 |
.tree li::before, .tree li::after {
|
|
|
107 |
}
|
108 |
.tree li a {
|
109 |
border: 1px solid #ccc;
|
110 |
+
padding: 5px;
|
111 |
display: inline-grid;
|
112 |
border-radius: 5px;
|
113 |
text-decoration-line: none;
|
|
|
115 |
transition: .5s;
|
116 |
}
|
117 |
.tree li a span {
|
|
|
|
|
118 |
color: #666;
|
119 |
+
padding: 5px;
|
120 |
font-size: 12px;
|
121 |
text-transform: uppercase;
|
122 |
letter-spacing: 1px;
|
|
|
126 |
.tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a {
|
127 |
background: #c8e4f8;
|
128 |
color: #000;
|
|
|
129 |
}
|
130 |
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
|
131 |
border-color: #94a0b4;
|
132 |
}
|
133 |
+
.chosen {
|
134 |
+
background-color: red;
|
135 |
+
}
|
136 |
"""
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
def generate_nodes(token, node):
|
140 |
+
"""Recursively generate HTML for the tree nodes."""
|
141 |
|
142 |
+
html_content = f" <li> <a href='#' class={('chosen' if node.table is None else '')}> <span> <b>{token}</b> </span> "
|
143 |
+
html_content += node.table if node.table is not None else ""
|
144 |
html_content += "</a>"
|
145 |
+
if len(node.children.keys()) > 0:
|
146 |
html_content += "<ul> "
|
147 |
+
for token, subnode in node.children.items():
|
148 |
+
html_content += generate_nodes(token, subnode)
|
149 |
html_content += "</ul>"
|
150 |
html_content += "</li>"
|
151 |
return html_content
|
|
|
157 |
<tr>
|
158 |
<th><b>Token</b></th>
|
159 |
<th><b>Step score</b></th>
|
160 |
+
<th><b>Total score</b></th>
|
161 |
</tr>"""
|
162 |
+
for token_idx in np.array(np.argsort(scores)[-top_k:])[::-1]:
|
163 |
token = tokenizer.decode([token_idx])
|
164 |
style = ""
|
165 |
if chosen_tokens and token in chosen_tokens:
|
|
|
175 |
return markdown_table
|
176 |
|
177 |
|
178 |
+
def generate_html(start_sentence, original_tree):
|
179 |
+
|
180 |
+
html_output = """<div class="custom-container">
|
181 |
<div class="tree">
|
182 |
<ul>"""
|
183 |
+
html_output += generate_nodes(start_sentence, original_tree)
|
184 |
+
|
185 |
+
html_output += """
|
186 |
+
</ul>
|
187 |
+
</div>
|
188 |
+
</body>
|
189 |
+
"""
|
190 |
+
return html_output
|
191 |
+
|
192 |
+
|
193 |
+
import pandas as pd
|
194 |
+
from typing import Dict
|
195 |
+
from dataclasses import dataclass
|
196 |
+
|
197 |
+
|
198 |
+
@dataclass
|
199 |
+
class BeamNode:
|
200 |
+
cumulative_score: float
|
201 |
+
table: str
|
202 |
+
current_sentence: str
|
203 |
+
children: Dict[str, "BeamNode"]
|
204 |
+
|
205 |
+
|
206 |
+
def generate_beams(start_sentence, scores, sequences, beam_indices):
|
207 |
print(tokenizer.batch_decode(sequences))
|
208 |
+
sequences = sequences.cpu().numpy()
|
209 |
+
original_tree = BeamNode(
|
210 |
+
cumulative_score=0, table=None, current_sentence=start_sentence, children={}
|
211 |
+
)
|
212 |
+
n_beams = len(scores[0])
|
213 |
+
beam_trees = [original_tree] * n_beams
|
214 |
+
for step, step_scores in enumerate(scores):
|
215 |
+
(
|
216 |
+
top_token_indexes,
|
217 |
+
top_cumulative_scores,
|
218 |
+
beam_indexes,
|
219 |
+
current_completions,
|
220 |
+
top_tokens,
|
221 |
+
) = ([], [], [], [], [])
|
222 |
+
for beam_ix in range(n_beams):
|
223 |
+
current_beam = beam_trees[beam_ix]
|
224 |
+
# Get top cumulative scores for the current beam
|
225 |
+
current_top_token_indexes = list(
|
226 |
+
np.array(scores[step][beam_ix].argsort()[-n_beams:])[::-1]
|
227 |
+
)
|
228 |
+
top_token_indexes += current_top_token_indexes
|
229 |
+
top_cumulative_scores += list(
|
230 |
+
np.array(scores[step][beam_ix][current_top_token_indexes])
|
231 |
+
+ current_beam.cumulative_score
|
232 |
+
)
|
233 |
+
beam_indexes += [beam_ix] * n_beams
|
234 |
+
current_completions += [beam_trees[beam_ix].current_sentence] * n_beams
|
235 |
+
top_tokens += [
|
236 |
+
tokenizer.decode([el]) for el in current_top_token_indexes
|
237 |
+
]
|
238 |
+
|
239 |
+
top_df = pd.DataFrame.from_dict(
|
240 |
+
{
|
241 |
+
"token_index": top_token_indexes,
|
242 |
+
"cumulative_score": top_cumulative_scores,
|
243 |
+
"beam_index": beam_indexes,
|
244 |
+
"current_completions": current_completions,
|
245 |
+
"token": top_tokens,
|
246 |
+
}
|
247 |
+
)
|
248 |
+
maxes = top_df.groupby(["token_index", "current_completions"])[
|
249 |
+
"cumulative_score"
|
250 |
+
].idxmax()
|
251 |
+
|
252 |
+
top_df = top_df.loc[maxes]
|
253 |
|
254 |
+
# Sort all top probabilities and keep top n_beams
|
255 |
+
top_df_selected = top_df.sort_values("cumulative_score", ascending=False).iloc[
|
256 |
+
:n_beams
|
257 |
+
]
|
258 |
+
print(step)
|
259 |
+
display(top_df_selected)
|
260 |
|
261 |
+
# Write the scores table - one per beam source?
|
262 |
+
# Edge case: if several beam indexes are actually on the same beam, the selected tokens by beam_index for the second one will be empty. So we reverse
|
263 |
+
for beam_ix in reversed(list(range(n_beams))):
|
264 |
+
current_beam = beam_trees[beam_ix]
|
265 |
+
selected_tokens = top_df_selected.loc[top_df_selected["beam_index"] == beam_ix]
|
266 |
+
print(step, beam_ix)
|
267 |
+
display(selected_tokens)
|
268 |
markdown_table = generate_markdown_table(
|
269 |
+
step_scores[beam_ix, :],
|
270 |
+
current_beam.cumulative_score,
|
271 |
+
chosen_tokens=list(selected_tokens["token"].values),
|
272 |
)
|
273 |
+
beam_trees[beam_ix].table = markdown_table
|
274 |
|
275 |
+
# Add new children for each beam
|
276 |
+
cumulative_scores = [beam.cumulative_score for beam in beam_trees]
|
277 |
+
for beam_ix in range(n_beams):
|
278 |
+
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
|
279 |
+
current_token_choice = tokenizer.decode([current_token_choice_ix])
|
280 |
|
281 |
+
# Update the source tree
|
282 |
+
source_beam_ix = int(top_df_selected.iloc[beam_ix]["beam_index"])
|
283 |
|
284 |
+
previous_len = len(str(original_tree))
|
285 |
+
beam_trees[source_beam_ix].children[current_token_choice] = BeamNode(
|
286 |
+
table=None,
|
287 |
+
children={},
|
288 |
+
current_sentence=beam_trees[source_beam_ix].current_sentence
|
289 |
+
+ current_token_choice,
|
290 |
+
cumulative_score=cumulative_scores[source_beam_ix]
|
291 |
+
+ scores[step][source_beam_ix][current_token_choice_ix].numpy(),
|
292 |
+
)
|
293 |
+
assert (
|
294 |
+
len(str(original_tree)) > previous_len
|
295 |
+
), "Original tree has not increased size"
|
296 |
|
297 |
+
# Reassign all beams at once
|
298 |
+
beam_trees = [
|
299 |
+
beam_trees[int(top_df_selected.iloc[beam_ix]["beam_index"])]
|
300 |
+
for beam_ix in range(n_beams)
|
301 |
+
]
|
302 |
+
|
303 |
+
# Advance all beams by one token
|
304 |
+
for beam_ix in range(n_beams):
|
305 |
+
current_token_choice_ix = top_df_selected.iloc[beam_ix]["token_index"]
|
306 |
+
current_token_choice = tokenizer.decode([current_token_choice_ix])
|
307 |
+
beam_trees[beam_ix] = beam_trees[beam_ix].children[current_token_choice]
|
308 |
+
return original_tree
|
309 |
|
310 |
@spaces.GPU
|
311 |
+
def get_beam_search_html(input_text, number_steps, number_beams):
|
312 |
inputs = tokenizer([input_text], return_tensors="pt")
|
313 |
|
314 |
outputs = model.generate(
|
|
|
319 |
return_dict_in_generate=True,
|
320 |
output_scores=True,
|
321 |
top_k=5,
|
322 |
+
do_sample=False,
|
|
|
323 |
)
|
|
|
324 |
|
325 |
+
original_tree = generate_beams(
|
326 |
input_text,
|
327 |
+
outputs.scores[:],
|
328 |
+
outputs.sequences[:, :],
|
329 |
+
outputs.beam_indices[:, :],
|
330 |
)
|
331 |
+
html = generate_html(input_text, original_tree)
|
332 |
+
print(html)
|
333 |
+
return html
|
334 |
|
335 |
|
336 |
with gr.Blocks(
|
|
|
344 |
beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
|
345 |
button = gr.Button()
|
346 |
out = gr.Markdown(label="Output")
|
347 |
+
button.click(get_beam_search_html, inputs=[text, steps, beams], outputs=out)
|
348 |
|
349 |
demo.launch()
|