File size: 7,808 Bytes
bb12219
83af178
897fd91
 
 
 
0a3060f
bb12219
9c16cbf
897fd91
0a3060f
897fd91
0a3060f
 
 
 
 
897fd91
0a3060f
 
897fd91
0a3060f
897fd91
bb12219
83af178
 
897fd91
5fbb27d
0a3060f
897fd91
0a3060f
897fd91
 
 
83af178
d48566f
897fd91
3c9086c
f0502f7
bb12219
 
 
 
 
 
0a3060f
897fd91
0a3060f
 
5fbb27d
897fd91
0a3060f
 
 
897fd91
0a3060f
 
897fd91
9c16cbf
897fd91
 
9c16cbf
897fd91
 
5fbb27d
0a3060f
897fd91
0a3060f
83af178
897fd91
83af178
897fd91
83af178
897fd91
 
 
 
 
5fbb27d
897fd91
 
 
 
 
 
83af178
897fd91
 
 
0a3060f
 
897fd91
0a3060f
897fd91
 
0a3060f
897fd91
83af178
897fd91
 
 
 
 
 
 
 
 
0a3060f
83af178
897fd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fbb27d
897fd91
 
83af178
5fbb27d
897fd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3060f
 
897fd91
0a3060f
897fd91
 
3c9086c
897fd91
 
 
3c9086c
897fd91
 
bb12219
897fd91
 
 
f0502f7
897fd91
 
c27fb7c
897fd91
 
 
 
 
 
 
 
9ec1122
897fd91
 
5fbb27d
897fd91
5fbb27d
897fd91
 
 
 
 
 
 
 
 
 
 
5fbb27d
897fd91
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import io
import tempfile
import logging
import traceback
from fastapi import FastAPI, Header, HTTPException, UploadFile, File, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from transformers import pipeline
from langdetect import detect, DetectorFactory
from PIL import Image
from smebuilder_vector import retriever  # Local vector retriever

# ==============================
# Logging Setup
# ==============================
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("DevAssist")

# ==============================
# FastAPI Init
# ==============================
app = FastAPI(title="DevAssist AI Backend")

@app.get("/")
async def root():
    return {"status": "✅ DevAssist AI Backend running"}

# ==============================
# Auth Configuration
# ==============================
PROJECT_API_KEY = os.getenv("PROJECT_API_KEY", "devassist-secret")
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
SPITCH_API_KEY = os.getenv("SPITCH_API_KEY")

def check_auth(authorization: str | None):
    """Bearer token validator."""
    if not PROJECT_API_KEY:
        return
    if not authorization or not authorization.startswith("Bearer "):
        raise HTTPException(status_code=401, detail="Missing bearer token")
    token = authorization.split(" ", 1)[1]
    if token != PROJECT_API_KEY:
        raise HTTPException(status_code=403, detail="Invalid token")

# ==============================
# Global Error Handler
# ==============================
@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
    logger.error(f"Unhandled Exception: {exc}")
    return JSONResponse(status_code=500, content={"error": str(exc)})

# ==============================
# Request Schemas
# ==============================
class ChatRequest(BaseModel):
    question: str

class AutoDocRequest(BaseModel):
    code: str

class SMERequest(BaseModel):
    user_prompt: str

# ==============================
# HuggingFace Pipelines
# ==============================
if not HF_TOKEN:
    logger.warning("⚠️ No Hugging Face token found. Private/gated models may fail.")
else:
    logger.info("✅ Hugging Face token detected and ready.")

HF_MODELS = {
    "chat": "meta-llama/Llama-3.1-8B-Instruct",
    "autodoc": "Salesforce/codegen-2B-mono",
    "sme": "deepseek-ai/deepseek-coder-1.3b-instruct"
}

def safe_pipeline(task: str, model: str, fallback="gpt2"):
    try:
        return pipeline(task, model=model, token=HF_TOKEN)
    except Exception as e:
        logger.warning(f"Failed to load {model}: {e} → Falling back to {fallback}")
        return pipeline(task, model=fallback)

chat_pipe = safe_pipeline("text-generation", HF_MODELS["chat"])
autodoc_pipe = safe_pipeline("text-generation", HF_MODELS["autodoc"])
sme_pipe = safe_pipeline("text-generation", HF_MODELS["sme"])

# ==============================
# Helper: Text Generation
# ==============================
def run_pipeline(pipe, prompt: str, max_tokens=512):
    """Run a text-generation pipeline with proper error capture."""
    try:
        output = pipe(prompt, max_new_tokens=max_tokens)
        if isinstance(output, list) and len(output) > 0:
            result = output[0].get("generated_text", "").strip()
        else:
            result = str(output).strip()

        logger.info(f"\n--- PROMPT ---\n{prompt}\n--- OUTPUT ---\n{result}\n--- END ---")

        if not result:
            return {"success": False, "error": "⚠️ LLM returned empty output."}
        return {"success": True, "data": result}
    except Exception as e:
        logger.error(f"Pipeline error: {e}")
        return {
            "success": False,
            "error": f"⚠️ LLM error: {str(e)}",
            "trace": traceback.format_exc(),
        }

# ==============================
# Audio Processing Helper
# ==============================
async def process_audio(file: UploadFile, lang_hint: str | None = None):
    import spitch
    spitch_client = spitch.Spitch()
    suffix = os.path.splitext(file.filename)[1] or ".wav"

    with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tf:
        tf.write(await file.read())
        tmp_path = tf.name

    with open(tmp_path, "rb") as f:
        audio_bytes = f.read()

    try:
        resp = spitch_client.speech.transcribe(
            content=audio_bytes, language=lang_hint or "en"
        )
    except Exception as e:
        logger.warning(f"Speech API failed: {e}")
        resp = {"text": ""}

    transcription = getattr(resp, "text", "") or (resp.get("text", "") if isinstance(resp, dict) else "")
    detected_lang = "en"
    try:
        detected_lang = detect(transcription) if transcription.strip() else "en"
    except Exception:
        pass

    # Optional translation
    translation = transcription
    if detected_lang != "en":
        try:
            translation_resp = spitch_client.text.translate(
                text=transcription, source=detected_lang, target="en"
            )
            translation = getattr(translation_resp, "text", "") or translation_resp.get("text", "")
        except Exception:
            translation = transcription

    return transcription, detected_lang, translation

# ==============================
# Endpoints
# ==============================
@app.post("/chat")
async def chat_endpoint(req: ChatRequest, authorization: str | None = Header(None)):
    check_auth(authorization)
    prompt = f"You are a helpful developer assistant. Question:\n{req.question}\nAnswer clearly:"
    result = run_pipeline(chat_pipe, prompt)
    return result

@app.post("/autodoc")
async def autodoc_endpoint(req: AutoDocRequest, authorization: str | None = Header(None)):
    check_auth(authorization)
    prompt = f"Generate Markdown documentation for the following Python code:\n{req.code}\nDocumentation:"
    result = run_pipeline(autodoc_pipe, prompt)
    return result

@app.post("/sme/generate")
async def sme_generate_endpoint(req: SMERequest, authorization: str | None = Header(None)):
    check_auth(authorization)
    try:
        context_docs = retriever.get_relevant_documents(req.user_prompt)
        context = "\n".join([doc.page_content for doc in context_docs]) if context_docs else "No extra context"
        prompt = f"Generate production-grade frontend code based on this:\n{req.user_prompt}\nContext:\n{context}\nOutput:"
        result = run_pipeline(sme_pipe, prompt)
        return result
    except Exception as e:
        return {"success": False, "error": f"⚠️ LLM error: {str(e)}", "trace": traceback.format_exc()}

@app.post("/sme/speech-generate")
async def sme_speech_endpoint(file: UploadFile = File(...), lang_hint: str | None = None, authorization: str | None = Header(None)):
    check_auth(authorization)
    transcription, detected_lang, translation = await process_audio(file, lang_hint)
    try:
        context_docs = retriever.get_relevant_documents(translation)
        context = "\n".join([doc.page_content for doc in context_docs]) if context_docs else "No extra context"
        prompt = f"Generate production-ready frontend code for this idea:\n{translation}\nContext:\n{context}\nOutput:"
        result = run_pipeline(sme_pipe, prompt)
        return {
            "success": True,
            "transcription": transcription,
            "detected_language": detected_lang,
            "translation": translation,
            "output": result.get("data", ""),
        }
    except Exception as e:
        return {"success": False, "error": f"⚠️ LLM error: {str(e)}", "trace": traceback.format_exc()}

# ==============================
# Run App
# ==============================
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("main:app", host="0.0.0.0", port=7860)