Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,107 +1,44 @@
|
|
| 1 |
import os
|
| 2 |
import tempfile
|
|
|
|
| 3 |
import traceback
|
| 4 |
from fastapi import FastAPI, UploadFile, File, Header, HTTPException, Body
|
| 5 |
-
from fastapi.
|
| 6 |
from pydantic import BaseModel
|
| 7 |
-
from spitch import Spitch
|
| 8 |
from transformers import pipeline
|
| 9 |
from langdetect import detect, DetectorFactory
|
| 10 |
-
from
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
DetectorFactory.seed = 0
|
| 14 |
-
|
| 15 |
-
SPITCH_API_KEY = os.getenv("SPITCH_API_KEY")
|
| 16 |
-
HF_MODEL = os.getenv("HF_MODEL", "deepseek-ai/deepseek-coder-1.3b-instruct")
|
| 17 |
-
FRONTEND_ORIGIN = os.getenv("ALLOWED_ORIGIN", "*")
|
| 18 |
PROJECT_API_KEY = os.getenv("PROJECT_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
if not SPITCH_API_KEY:
|
| 21 |
raise RuntimeError("Set SPITCH_API_KEY in environment before starting.")
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
# ----------------- HUGGINGFACE PIPELINE -----------------
|
| 27 |
-
llm_pipeline = pipeline(
|
| 28 |
-
task="text-generation",
|
| 29 |
-
model=HF_MODEL,
|
| 30 |
-
temperature=0.7,
|
| 31 |
-
top_p=0.9,
|
| 32 |
-
do_sample=True,
|
| 33 |
-
repetition_penalty=1.1,
|
| 34 |
-
max_new_tokens=2048
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
# ----------------- FASTAPI -----------------
|
| 38 |
-
app = FastAPI(title="DevAssist AI Backend (FastAPI + HuggingFace Pipeline)")
|
| 39 |
-
|
| 40 |
-
app.add_middleware(
|
| 41 |
-
CORSMiddleware,
|
| 42 |
-
allow_origins=[FRONTEND_ORIGIN] if FRONTEND_ORIGIN != "*" else ["*"],
|
| 43 |
-
allow_credentials=True,
|
| 44 |
-
allow_methods=["GET", "POST", "OPTIONS"],
|
| 45 |
-
allow_headers=["Authorization", "Content-Type"],
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
# ----------------- PROMPTS -----------------
|
| 49 |
-
chat_template = """You are DevAssist, an AI coding assistant.
|
| 50 |
-
|
| 51 |
-
Guidelines:
|
| 52 |
-
- Always format responses in Markdown.
|
| 53 |
-
- Use section headers: Explanation:, Steps:, Fixed Code:
|
| 54 |
-
- Use bullet points for steps.
|
| 55 |
-
- Use fenced code blocks for code.
|
| 56 |
-
- Be friendly yet professional.
|
| 57 |
-
|
| 58 |
-
Question: {question}
|
| 59 |
-
|
| 60 |
-
Answer:
|
| 61 |
-
"""
|
| 62 |
-
|
| 63 |
-
stt_chat_template = """You are DevAssist, an AI coding assistant.
|
| 64 |
-
The input is transcribed speech. Interpret it as a developer question.
|
| 65 |
-
Provide clear answers with code examples.
|
| 66 |
-
If unclear, ask for clarification.
|
| 67 |
-
|
| 68 |
-
Spoken Question: {speech}
|
| 69 |
-
Answer:
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
autodoc_template = """You are DevAssist DocBot.
|
| 73 |
-
Read the code and produce professional documentation in markdown.
|
| 74 |
-
|
| 75 |
-
Code: {code}
|
| 76 |
-
Documentation:
|
| 77 |
-
"""
|
| 78 |
-
|
| 79 |
-
sme_template = """
|
| 80 |
-
You are a senior full-stack engineer specializing in modern front-end development.
|
| 81 |
-
Your job is to generate **production-ready code** for websites and apps.
|
| 82 |
-
|
| 83 |
-
Guidelines:
|
| 84 |
-
- Always return three separate files: index.html, styles.css, and script.js
|
| 85 |
-
- HTML must be semantic, responsive, and mobile-first
|
| 86 |
-
- CSS should use Flexbox/Grid with hover/transition effects
|
| 87 |
-
- JavaScript must add interactivity (animations, toggles, button actions)
|
| 88 |
-
- Include hero, feature grid, testimonials, and footer
|
| 89 |
-
- Use realistic content (no lorem ipsum, no placeholders)
|
| 90 |
-
|
| 91 |
-
Prompt: {user_prompt}
|
| 92 |
-
Context: {context}
|
| 93 |
-
|
| 94 |
-
Output:
|
| 95 |
-
"""
|
| 96 |
-
|
| 97 |
-
# ----------------- REQUEST MODELS -----------------
|
| 98 |
-
class ChatRequest(BaseModel):
|
| 99 |
-
question: str
|
| 100 |
-
|
| 101 |
-
class AutoDocRequest(BaseModel):
|
| 102 |
-
code: str
|
| 103 |
-
|
| 104 |
-
# ----------------- AUTH -----------------
|
| 105 |
def check_auth(authorization: str | None):
|
| 106 |
if not PROJECT_API_KEY:
|
| 107 |
return
|
|
@@ -111,41 +48,73 @@ def check_auth(authorization: str | None):
|
|
| 111 |
if token != PROJECT_API_KEY:
|
| 112 |
raise HTTPException(status_code=403, detail="Invalid token")
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
output_list = llm_pipeline(prompt_text, max_new_tokens=2048, do_sample=True)
|
| 120 |
-
text = output_list[0]['generated_text'].strip()
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
f.write("=== PROMPT START ===\n")
|
| 125 |
-
f.write(prompt_text + "\n")
|
| 126 |
-
f.write("--- MODEL OUTPUT ---\n")
|
| 127 |
-
f.write(text + "\n")
|
| 128 |
-
f.write("=== PROMPT END ===\n\n")
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
if not text:
|
| 131 |
-
return {"success": False, "error": "⚠️ LLM returned empty output", "prompt":
|
| 132 |
return text
|
| 133 |
-
except Exception:
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
return {"success": False, "error": "⚠️ LLM error", "details": traceback.format_exc(), "prompt": prompt_text}
|
| 141 |
-
|
| 142 |
-
# ----------------- AUDIO PROCESSING -----------------
|
| 143 |
async def process_audio(file: UploadFile, lang_hint: str | None = None):
|
|
|
|
|
|
|
| 144 |
suffix = os.path.splitext(file.filename)[1] or ".wav"
|
| 145 |
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tf:
|
| 146 |
tf.write(await file.read())
|
| 147 |
tmp_path = tf.name
|
| 148 |
-
|
| 149 |
with open(tmp_path, "rb") as f:
|
| 150 |
audio_bytes = f.read()
|
| 151 |
|
|
@@ -174,60 +143,48 @@ async def process_audio(file: UploadFile, lang_hint: str | None = None):
|
|
| 174 |
|
| 175 |
return transcription, detected_lang, translation
|
| 176 |
|
| 177 |
-
#
|
|
|
|
|
|
|
| 178 |
@app.get("/")
|
| 179 |
-
def
|
| 180 |
return {"status": "✅ DevAssist AI Backend running"}
|
| 181 |
|
| 182 |
@app.post("/chat")
|
| 183 |
-
def
|
| 184 |
check_auth(authorization)
|
| 185 |
-
|
| 186 |
-
result = run_pipeline(
|
| 187 |
return result if isinstance(result, dict) else {"reply": result}
|
| 188 |
|
| 189 |
-
@app.post("/stt")
|
| 190 |
-
async def stt_audio(file: UploadFile = File(...), lang_hint: str | None = None, authorization: str | None = Header(None)):
|
| 191 |
-
check_auth(authorization)
|
| 192 |
-
transcription, detected_lang, translation = await process_audio(file, lang_hint)
|
| 193 |
-
prompt_text = stt_chat_template.format(speech=translation)
|
| 194 |
-
result = run_pipeline(prompt_text)
|
| 195 |
-
return {
|
| 196 |
-
"transcription": transcription,
|
| 197 |
-
"detected_language": detected_lang,
|
| 198 |
-
"translation": translation,
|
| 199 |
-
"reply": result if isinstance(result, str) else result.get("reply", "")
|
| 200 |
-
}
|
| 201 |
-
|
| 202 |
@app.post("/autodoc")
|
| 203 |
-
def
|
| 204 |
check_auth(authorization)
|
| 205 |
-
|
| 206 |
-
result = run_pipeline(
|
| 207 |
return result if isinstance(result, dict) else {"documentation": result}
|
| 208 |
|
| 209 |
@app.post("/sme/generate")
|
| 210 |
-
async def
|
| 211 |
check_auth(authorization)
|
| 212 |
try:
|
| 213 |
-
|
| 214 |
-
context_docs = retriever.get_relevant_documents(user_prompt)
|
| 215 |
context = "\n".join([doc.page_content for doc in context_docs]) if context_docs else "No extra context"
|
| 216 |
-
|
| 217 |
-
result = run_pipeline(
|
| 218 |
return {"success": True, "data": result if isinstance(result, str) else result.get("reply", "")}
|
| 219 |
-
except Exception:
|
| 220 |
-
return {"success": False, "error": "⚠️ LLM error", "
|
| 221 |
|
| 222 |
@app.post("/sme/speech-generate")
|
| 223 |
-
async def
|
| 224 |
check_auth(authorization)
|
| 225 |
transcription, detected_lang, translation = await process_audio(file, lang_hint)
|
| 226 |
try:
|
| 227 |
context_docs = retriever.get_relevant_documents(translation)
|
| 228 |
context = "\n".join([doc.page_content for doc in context_docs]) if context_docs else "No extra context"
|
| 229 |
-
|
| 230 |
-
result = run_pipeline(
|
| 231 |
return {
|
| 232 |
"success": True,
|
| 233 |
"transcription": transcription,
|
|
@@ -235,10 +192,12 @@ async def sme_speech_generate(file: UploadFile = File(...), lang_hint: str | Non
|
|
| 235 |
"translation": translation,
|
| 236 |
"sme_site": result if isinstance(result, str) else result.get("reply", "")
|
| 237 |
}
|
| 238 |
-
except Exception:
|
| 239 |
-
return {"success": False, "error": "⚠️ LLM error", "
|
| 240 |
|
| 241 |
-
#
|
|
|
|
|
|
|
| 242 |
if __name__ == "__main__":
|
| 243 |
import uvicorn
|
| 244 |
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import tempfile
|
| 3 |
+
import logging
|
| 4 |
import traceback
|
| 5 |
from fastapi import FastAPI, UploadFile, File, Header, HTTPException, Body
|
| 6 |
+
from fastapi.responses import JSONResponse
|
| 7 |
from pydantic import BaseModel
|
|
|
|
| 8 |
from transformers import pipeline
|
| 9 |
from langdetect import detect, DetectorFactory
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from smebuilder_vector import retriever # Your vector retrieval module
|
| 12 |
+
|
| 13 |
+
# ==============================
|
| 14 |
+
# Logging Setup
|
| 15 |
+
# ==============================
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger("DevAssist")
|
| 18 |
+
|
| 19 |
+
# ==============================
|
| 20 |
+
# App Init
|
| 21 |
+
# ==============================
|
| 22 |
+
app = FastAPI(title="DevAssist AI Backend")
|
| 23 |
+
|
| 24 |
+
# ==============================
|
| 25 |
+
# Config
|
| 26 |
+
# ==============================
|
| 27 |
DetectorFactory.seed = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
PROJECT_API_KEY = os.getenv("PROJECT_API_KEY")
|
| 29 |
+
SPITCH_API_KEY = os.getenv("SPITCH_API_KEY")
|
| 30 |
+
HF_MODELS = {
|
| 31 |
+
"chat": "bigcode/starcoderbase",
|
| 32 |
+
"autodoc": "Salesforce/codegen-2B-mono",
|
| 33 |
+
"sme": "deepseek-ai/deepseek-coder-1.3b-instruct"
|
| 34 |
+
}
|
| 35 |
|
| 36 |
if not SPITCH_API_KEY:
|
| 37 |
raise RuntimeError("Set SPITCH_API_KEY in environment before starting.")
|
| 38 |
|
| 39 |
+
# ==============================
|
| 40 |
+
# Auth Check
|
| 41 |
+
# ==============================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def check_auth(authorization: str | None):
|
| 43 |
if not PROJECT_API_KEY:
|
| 44 |
return
|
|
|
|
| 48 |
if token != PROJECT_API_KEY:
|
| 49 |
raise HTTPException(status_code=403, detail="Invalid token")
|
| 50 |
|
| 51 |
+
# ==============================
|
| 52 |
+
# Global Exception Handler
|
| 53 |
+
# ==============================
|
| 54 |
+
@app.exception_handler(Exception)
|
| 55 |
+
async def global_exception_handler(request, exc: Exception):
|
| 56 |
+
logger.error(f"Unhandled error: {exc}")
|
| 57 |
+
return JSONResponse(status_code=500, content={"error": str(exc)})
|
| 58 |
+
|
| 59 |
+
# ==============================
|
| 60 |
+
# Request Models
|
| 61 |
+
# ==============================
|
| 62 |
+
class ChatRequest(BaseModel):
|
| 63 |
+
question: str
|
| 64 |
|
| 65 |
+
class AutoDocRequest(BaseModel):
|
| 66 |
+
code: str
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
class SMERequest(BaseModel):
|
| 69 |
+
user_prompt: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
# ==============================
|
| 72 |
+
# Pipeline Loader
|
| 73 |
+
# ==============================
|
| 74 |
+
def load_pipeline(task: str, model_name: str, fallback: str = None):
|
| 75 |
+
try:
|
| 76 |
+
return pipeline(task, model=model_name)
|
| 77 |
+
except Exception as e:
|
| 78 |
+
logger.warning(f"Failed to load {model_name}: {e}")
|
| 79 |
+
if fallback:
|
| 80 |
+
logger.info(f"Falling back to {fallback}")
|
| 81 |
+
return pipeline(task, model=fallback)
|
| 82 |
+
raise e
|
| 83 |
+
|
| 84 |
+
# ==============================
|
| 85 |
+
# Pipelines
|
| 86 |
+
# ==============================
|
| 87 |
+
chat_pipe = load_pipeline("text-generation", HF_MODELS["chat"], "gpt2")
|
| 88 |
+
autodoc_pipe = load_pipeline("text-generation", HF_MODELS["autodoc"], "gpt2")
|
| 89 |
+
sme_pipe = load_pipeline("text-generation", HF_MODELS["sme"], "gpt2")
|
| 90 |
+
|
| 91 |
+
# ==============================
|
| 92 |
+
# Helper Functions
|
| 93 |
+
# ==============================
|
| 94 |
+
def run_pipeline(pipe, prompt: str):
|
| 95 |
+
try:
|
| 96 |
+
output_list = pipe(prompt, max_new_tokens=1024, do_sample=True)
|
| 97 |
+
text = output_list[0].get("generated_text", "").strip() if isinstance(output_list, list) else str(output_list)
|
| 98 |
+
|
| 99 |
+
# Log prompt + output
|
| 100 |
+
logger.info(f"Prompt:\n{prompt}\n--- Output:\n{text}\n--- End")
|
| 101 |
if not text:
|
| 102 |
+
return {"success": False, "error": "⚠️ LLM returned empty output", "prompt": prompt}
|
| 103 |
return text
|
| 104 |
+
except Exception as e:
|
| 105 |
+
logger.error(f"Pipeline error: {e}")
|
| 106 |
+
return {"success": False, "error": f"⚠️ LLM error: {str(e)}", "prompt": prompt, "trace": traceback.format_exc()}
|
| 107 |
+
|
| 108 |
+
# ==============================
|
| 109 |
+
# Audio Processing Helper
|
| 110 |
+
# ==============================
|
|
|
|
|
|
|
|
|
|
| 111 |
async def process_audio(file: UploadFile, lang_hint: str | None = None):
|
| 112 |
+
import spitch
|
| 113 |
+
spitch_client = spitch.Spitch()
|
| 114 |
suffix = os.path.splitext(file.filename)[1] or ".wav"
|
| 115 |
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tf:
|
| 116 |
tf.write(await file.read())
|
| 117 |
tmp_path = tf.name
|
|
|
|
| 118 |
with open(tmp_path, "rb") as f:
|
| 119 |
audio_bytes = f.read()
|
| 120 |
|
|
|
|
| 143 |
|
| 144 |
return transcription, detected_lang, translation
|
| 145 |
|
| 146 |
+
# ==============================
|
| 147 |
+
# Endpoints
|
| 148 |
+
# ==============================
|
| 149 |
@app.get("/")
|
| 150 |
+
async def root_endpoint():
|
| 151 |
return {"status": "✅ DevAssist AI Backend running"}
|
| 152 |
|
| 153 |
@app.post("/chat")
|
| 154 |
+
async def chat_endpoint(req: ChatRequest, authorization: str | None = Header(None)):
|
| 155 |
check_auth(authorization)
|
| 156 |
+
prompt = f"You are a professional coding assistant. Answer clearly:\nQuestion: {req.question}\nAnswer:"
|
| 157 |
+
result = run_pipeline(chat_pipe, prompt)
|
| 158 |
return result if isinstance(result, dict) else {"reply": result}
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
@app.post("/autodoc")
|
| 161 |
+
async def autodoc_endpoint(req: AutoDocRequest, authorization: str | None = Header(None)):
|
| 162 |
check_auth(authorization)
|
| 163 |
+
prompt = f"Generate professional documentation for the following code in Markdown:\n{req.code}\nDocumentation:"
|
| 164 |
+
result = run_pipeline(autodoc_pipe, prompt)
|
| 165 |
return result if isinstance(result, dict) else {"documentation": result}
|
| 166 |
|
| 167 |
@app.post("/sme/generate")
|
| 168 |
+
async def sme_generate_endpoint(req: SMERequest, authorization: str | None = Header(None)):
|
| 169 |
check_auth(authorization)
|
| 170 |
try:
|
| 171 |
+
context_docs = retriever.get_relevant_documents(req.user_prompt)
|
|
|
|
| 172 |
context = "\n".join([doc.page_content for doc in context_docs]) if context_docs else "No extra context"
|
| 173 |
+
prompt = f"Generate production-ready frontend code based on this prompt:\n{req.user_prompt}\nContext:\n{context}\nOutput:"
|
| 174 |
+
result = run_pipeline(sme_pipe, prompt)
|
| 175 |
return {"success": True, "data": result if isinstance(result, str) else result.get("reply", "")}
|
| 176 |
+
except Exception as e:
|
| 177 |
+
return {"success": False, "error": f"⚠️ LLM error: {str(e)}", "trace": traceback.format_exc()}
|
| 178 |
|
| 179 |
@app.post("/sme/speech-generate")
|
| 180 |
+
async def sme_speech_endpoint(file: UploadFile = File(...), lang_hint: str | None = None, authorization: str | None = Header(None)):
|
| 181 |
check_auth(authorization)
|
| 182 |
transcription, detected_lang, translation = await process_audio(file, lang_hint)
|
| 183 |
try:
|
| 184 |
context_docs = retriever.get_relevant_documents(translation)
|
| 185 |
context = "\n".join([doc.page_content for doc in context_docs]) if context_docs else "No extra context"
|
| 186 |
+
prompt = f"Generate production-ready frontend code based on this prompt:\n{translation}\nContext:\n{context}\nOutput:"
|
| 187 |
+
result = run_pipeline(sme_pipe, prompt)
|
| 188 |
return {
|
| 189 |
"success": True,
|
| 190 |
"transcription": transcription,
|
|
|
|
| 192 |
"translation": translation,
|
| 193 |
"sme_site": result if isinstance(result, str) else result.get("reply", "")
|
| 194 |
}
|
| 195 |
+
except Exception as e:
|
| 196 |
+
return {"success": False, "error": f"⚠️ LLM error: {str(e)}", "trace": traceback.format_exc()}
|
| 197 |
|
| 198 |
+
# ==============================
|
| 199 |
+
# Run App
|
| 200 |
+
# ==============================
|
| 201 |
if __name__ == "__main__":
|
| 202 |
import uvicorn
|
| 203 |
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=False)
|