Spaces:
Runtime error
Runtime error
File size: 1,240 Bytes
753e275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import copy
import torch
from torchvision.transforms import Compose
_TRANSFORM_DICT = {}
def register_transform(name):
def decorator(cls):
_TRANSFORM_DICT[name] = cls
return cls
return decorator
def get_transform(cfg):
if cfg is None or len(cfg) == 0:
return None
tfms = []
for t_dict in cfg:
t_dict = copy.deepcopy(t_dict)
cls = _TRANSFORM_DICT[t_dict.pop('type')]
tfms.append(cls(**t_dict))
return Compose(tfms)
def _index_select(v, index, n):
if isinstance(v, torch.Tensor) and v.size(0) == n:
return v[index]
elif isinstance(v, list) and len(v) == n:
return [v[i] for i in index]
else:
return v
def _index_select_data(data, index):
return {
k: _index_select(v, index, data['aa'].size(0))
for k, v in data.items()
}
def _mask_select(v, mask):
if isinstance(v, torch.Tensor) and v.size(0) == mask.size(0):
return v[mask]
elif isinstance(v, list) and len(v) == mask.size(0):
return [v[i] for i, b in enumerate(mask) if b]
else:
return v
def _mask_select_data(data, mask):
return {
k: _mask_select(v, mask)
for k, v in data.items()
}
|