Spaces:
Runtime error
Runtime error
File size: 12,626 Bytes
753e275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
from tqdm.auto import tqdm
from diffab.modules.common.geometry import apply_rotation_to_vector, quaternion_1ijk_to_rotation_matrix
from diffab.modules.common.so3 import so3vec_to_rotation, rotation_to_so3vec, random_uniform_so3
from diffab.modules.encoders.ga import GAEncoder
from .transition import RotationTransition, PositionTransition, AminoacidCategoricalTransition
def rotation_matrix_cosine_loss(R_pred, R_true):
"""
Args:
R_pred: (*, 3, 3).
R_true: (*, 3, 3).
Returns:
Per-matrix losses, (*, ).
"""
size = list(R_pred.shape[:-2])
ncol = R_pred.numel() // 3
RT_pred = R_pred.transpose(-2, -1).reshape(ncol, 3) # (ncol, 3)
RT_true = R_true.transpose(-2, -1).reshape(ncol, 3) # (ncol, 3)
ones = torch.ones([ncol, ], dtype=torch.long, device=R_pred.device)
loss = F.cosine_embedding_loss(RT_pred, RT_true, ones, reduction='none') # (ncol*3, )
loss = loss.reshape(size + [3]).sum(dim=-1) # (*, )
return loss
class EpsilonNet(nn.Module):
def __init__(self, res_feat_dim, pair_feat_dim, num_layers, encoder_opt={}):
super().__init__()
self.current_sequence_embedding = nn.Embedding(25, res_feat_dim) # 22 is padding
self.res_feat_mixer = nn.Sequential(
nn.Linear(res_feat_dim * 2, res_feat_dim), nn.ReLU(),
nn.Linear(res_feat_dim, res_feat_dim),
)
self.encoder = GAEncoder(res_feat_dim, pair_feat_dim, num_layers, **encoder_opt)
self.eps_crd_net = nn.Sequential(
nn.Linear(res_feat_dim+3, res_feat_dim), nn.ReLU(),
nn.Linear(res_feat_dim, res_feat_dim), nn.ReLU(),
nn.Linear(res_feat_dim, 3)
)
self.eps_rot_net = nn.Sequential(
nn.Linear(res_feat_dim+3, res_feat_dim), nn.ReLU(),
nn.Linear(res_feat_dim, res_feat_dim), nn.ReLU(),
nn.Linear(res_feat_dim, 3)
)
self.eps_seq_net = nn.Sequential(
nn.Linear(res_feat_dim+3, res_feat_dim), nn.ReLU(),
nn.Linear(res_feat_dim, res_feat_dim), nn.ReLU(),
nn.Linear(res_feat_dim, 20), nn.Softmax(dim=-1)
)
def forward(self, v_t, p_t, s_t, res_feat, pair_feat, beta, mask_generate, mask_res):
"""
Args:
v_t: (N, L, 3).
p_t: (N, L, 3).
s_t: (N, L).
res_feat: (N, L, res_dim).
pair_feat: (N, L, L, pair_dim).
beta: (N,).
mask_generate: (N, L).
mask_res: (N, L).
Returns:
v_next: UPDATED (not epsilon) SO3-vector of orietnations, (N, L, 3).
eps_pos: (N, L, 3).
"""
N, L = mask_res.size()
R = so3vec_to_rotation(v_t) # (N, L, 3, 3)
# s_t = s_t.clamp(min=0, max=19) # TODO: clamping is good but ugly.
res_feat = self.res_feat_mixer(torch.cat([res_feat, self.current_sequence_embedding(s_t)], dim=-1)) # [Important] Incorporate sequence at the current step.
res_feat = self.encoder(R, p_t, res_feat, pair_feat, mask_res)
t_embed = torch.stack([beta, torch.sin(beta), torch.cos(beta)], dim=-1)[:, None, :].expand(N, L, 3)
in_feat = torch.cat([res_feat, t_embed], dim=-1)
# Position changes
eps_crd = self.eps_crd_net(in_feat) # (N, L, 3)
eps_pos = apply_rotation_to_vector(R, eps_crd) # (N, L, 3)
eps_pos = torch.where(mask_generate[:, :, None].expand_as(eps_pos), eps_pos, torch.zeros_like(eps_pos))
# New orientation
eps_rot = self.eps_rot_net(in_feat) # (N, L, 3)
U = quaternion_1ijk_to_rotation_matrix(eps_rot) # (N, L, 3, 3)
R_next = R @ U
v_next = rotation_to_so3vec(R_next) # (N, L, 3)
v_next = torch.where(mask_generate[:, :, None].expand_as(v_next), v_next, v_t)
# New sequence categorical distributions
c_denoised = self.eps_seq_net(in_feat) # Already softmax-ed, (N, L, 20)
return v_next, R_next, eps_pos, c_denoised
class FullDPM(nn.Module):
def __init__(
self,
res_feat_dim,
pair_feat_dim,
num_steps,
eps_net_opt={},
trans_rot_opt={},
trans_pos_opt={},
trans_seq_opt={},
position_mean=[0.0, 0.0, 0.0],
position_scale=[10.0],
):
super().__init__()
self.eps_net = EpsilonNet(res_feat_dim, pair_feat_dim, **eps_net_opt)
self.num_steps = num_steps
self.trans_rot = RotationTransition(num_steps, **trans_rot_opt)
self.trans_pos = PositionTransition(num_steps, **trans_pos_opt)
self.trans_seq = AminoacidCategoricalTransition(num_steps, **trans_seq_opt)
self.register_buffer('position_mean', torch.FloatTensor(position_mean).view(1, 1, -1))
self.register_buffer('position_scale', torch.FloatTensor(position_scale).view(1, 1, -1))
self.register_buffer('_dummy', torch.empty([0, ]))
def _normalize_position(self, p):
p_norm = (p - self.position_mean) / self.position_scale
return p_norm
def _unnormalize_position(self, p_norm):
p = p_norm * self.position_scale + self.position_mean
return p
def forward(self, v_0, p_0, s_0, res_feat, pair_feat, mask_generate, mask_res, denoise_structure, denoise_sequence, t=None):
N, L = res_feat.shape[:2]
if t == None:
t = torch.randint(0, self.num_steps, (N,), dtype=torch.long, device=self._dummy.device)
p_0 = self._normalize_position(p_0)
if denoise_structure:
# Add noise to rotation
R_0 = so3vec_to_rotation(v_0)
v_noisy, _ = self.trans_rot.add_noise(v_0, mask_generate, t)
# Add noise to positions
p_noisy, eps_p = self.trans_pos.add_noise(p_0, mask_generate, t)
else:
R_0 = so3vec_to_rotation(v_0)
v_noisy = v_0.clone()
p_noisy = p_0.clone()
eps_p = torch.zeros_like(p_noisy)
if denoise_sequence:
# Add noise to sequence
_, s_noisy = self.trans_seq.add_noise(s_0, mask_generate, t)
else:
s_noisy = s_0.clone()
beta = self.trans_pos.var_sched.betas[t]
v_pred, R_pred, eps_p_pred, c_denoised = self.eps_net(
v_noisy, p_noisy, s_noisy, res_feat, pair_feat, beta, mask_generate, mask_res
) # (N, L, 3), (N, L, 3, 3), (N, L, 3), (N, L, 20), (N, L)
loss_dict = {}
# Rotation loss
loss_rot = rotation_matrix_cosine_loss(R_pred, R_0) # (N, L)
loss_rot = (loss_rot * mask_generate).sum() / (mask_generate.sum().float() + 1e-8)
loss_dict['rot'] = loss_rot
# Position loss
loss_pos = F.mse_loss(eps_p_pred, eps_p, reduction='none').sum(dim=-1) # (N, L)
loss_pos = (loss_pos * mask_generate).sum() / (mask_generate.sum().float() + 1e-8)
loss_dict['pos'] = loss_pos
# Sequence categorical loss
post_true = self.trans_seq.posterior(s_noisy, s_0, t)
log_post_pred = torch.log(self.trans_seq.posterior(s_noisy, c_denoised, t) + 1e-8)
kldiv = F.kl_div(
input=log_post_pred,
target=post_true,
reduction='none',
log_target=False
).sum(dim=-1) # (N, L)
loss_seq = (kldiv * mask_generate).sum() / (mask_generate.sum().float() + 1e-8)
loss_dict['seq'] = loss_seq
return loss_dict
@torch.no_grad()
def sample(
self,
v, p, s,
res_feat, pair_feat,
mask_generate, mask_res,
sample_structure=True, sample_sequence=True,
pbar=False,
):
"""
Args:
v: Orientations of contextual residues, (N, L, 3).
p: Positions of contextual residues, (N, L, 3).
s: Sequence of contextual residues, (N, L).
"""
N, L = v.shape[:2]
p = self._normalize_position(p)
# Set the orientation and position of residues to be predicted to random values
if sample_structure:
v_rand = random_uniform_so3([N, L], device=self._dummy.device)
p_rand = torch.randn_like(p)
v_init = torch.where(mask_generate[:, :, None].expand_as(v), v_rand, v)
p_init = torch.where(mask_generate[:, :, None].expand_as(p), p_rand, p)
else:
v_init, p_init = v, p
if sample_sequence:
s_rand = torch.randint_like(s, low=0, high=19)
s_init = torch.where(mask_generate, s_rand, s)
else:
s_init = s
traj = {self.num_steps: (v_init, self._unnormalize_position(p_init), s_init)}
if pbar:
pbar = functools.partial(tqdm, total=self.num_steps, desc='Sampling')
else:
pbar = lambda x: x
for t in pbar(range(self.num_steps, 0, -1)):
v_t, p_t, s_t = traj[t]
p_t = self._normalize_position(p_t)
beta = self.trans_pos.var_sched.betas[t].expand([N, ])
t_tensor = torch.full([N, ], fill_value=t, dtype=torch.long, device=self._dummy.device)
v_next, R_next, eps_p, c_denoised = self.eps_net(
v_t, p_t, s_t, res_feat, pair_feat, beta, mask_generate, mask_res
) # (N, L, 3), (N, L, 3, 3), (N, L, 3)
v_next = self.trans_rot.denoise(v_t, v_next, mask_generate, t_tensor)
p_next = self.trans_pos.denoise(p_t, eps_p, mask_generate, t_tensor)
_, s_next = self.trans_seq.denoise(s_t, c_denoised, mask_generate, t_tensor)
if not sample_structure:
v_next, p_next = v_t, p_t
if not sample_sequence:
s_next = s_t
traj[t-1] = (v_next, self._unnormalize_position(p_next), s_next)
traj[t] = tuple(x.cpu() for x in traj[t]) # Move previous states to cpu memory.
return traj
@torch.no_grad()
def optimize(
self,
v, p, s,
opt_step: int,
res_feat, pair_feat,
mask_generate, mask_res,
sample_structure=True, sample_sequence=True,
pbar=False,
):
"""
Description:
First adds noise to the given structure, then denoises it.
"""
N, L = v.shape[:2]
p = self._normalize_position(p)
t = torch.full([N, ], fill_value=opt_step, dtype=torch.long, device=self._dummy.device)
# Set the orientation and position of residues to be predicted to random values
if sample_structure:
# Add noise to rotation
v_noisy, _ = self.trans_rot.add_noise(v, mask_generate, t)
# Add noise to positions
p_noisy, _ = self.trans_pos.add_noise(p, mask_generate, t)
v_init = torch.where(mask_generate[:, :, None].expand_as(v), v_noisy, v)
p_init = torch.where(mask_generate[:, :, None].expand_as(p), p_noisy, p)
else:
v_init, p_init = v, p
if sample_sequence:
_, s_noisy = self.trans_seq.add_noise(s, mask_generate, t)
s_init = torch.where(mask_generate, s_noisy, s)
else:
s_init = s
traj = {opt_step: (v_init, self._unnormalize_position(p_init), s_init)}
if pbar:
pbar = functools.partial(tqdm, total=opt_step, desc='Optimizing')
else:
pbar = lambda x: x
for t in pbar(range(opt_step, 0, -1)):
v_t, p_t, s_t = traj[t]
p_t = self._normalize_position(p_t)
beta = self.trans_pos.var_sched.betas[t].expand([N, ])
t_tensor = torch.full([N, ], fill_value=t, dtype=torch.long, device=self._dummy.device)
v_next, R_next, eps_p, c_denoised = self.eps_net(
v_t, p_t, s_t, res_feat, pair_feat, beta, mask_generate, mask_res
) # (N, L, 3), (N, L, 3, 3), (N, L, 3)
v_next = self.trans_rot.denoise(v_t, v_next, mask_generate, t_tensor)
p_next = self.trans_pos.denoise(p_t, eps_p, mask_generate, t_tensor)
_, s_next = self.trans_seq.denoise(s_t, c_denoised, mask_generate, t_tensor)
if not sample_structure:
v_next, p_next = v_t, p_t
if not sample_sequence:
s_next = s_t
traj[t-1] = (v_next, self._unnormalize_position(p_next), s_next)
traj[t] = tuple(x.cpu() for x in traj[t]) # Move previous states to cpu memory.
return traj
|