File size: 12,626 Bytes
753e275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
from tqdm.auto import tqdm

from diffab.modules.common.geometry import apply_rotation_to_vector, quaternion_1ijk_to_rotation_matrix
from diffab.modules.common.so3 import so3vec_to_rotation, rotation_to_so3vec, random_uniform_so3
from diffab.modules.encoders.ga import GAEncoder
from .transition import RotationTransition, PositionTransition, AminoacidCategoricalTransition


def rotation_matrix_cosine_loss(R_pred, R_true):
    """
    Args:
        R_pred: (*, 3, 3).
        R_true: (*, 3, 3).
    Returns:
        Per-matrix losses, (*, ).
    """
    size = list(R_pred.shape[:-2])
    ncol = R_pred.numel() // 3

    RT_pred = R_pred.transpose(-2, -1).reshape(ncol, 3) # (ncol, 3)
    RT_true = R_true.transpose(-2, -1).reshape(ncol, 3) # (ncol, 3)

    ones = torch.ones([ncol, ], dtype=torch.long, device=R_pred.device)
    loss = F.cosine_embedding_loss(RT_pred, RT_true, ones, reduction='none')  # (ncol*3, )
    loss = loss.reshape(size + [3]).sum(dim=-1)    # (*, )
    return loss


class EpsilonNet(nn.Module):

    def __init__(self, res_feat_dim, pair_feat_dim, num_layers, encoder_opt={}):
        super().__init__()
        self.current_sequence_embedding = nn.Embedding(25, res_feat_dim)  # 22 is padding
        self.res_feat_mixer = nn.Sequential(
            nn.Linear(res_feat_dim * 2, res_feat_dim), nn.ReLU(),
            nn.Linear(res_feat_dim, res_feat_dim),
        )
        self.encoder = GAEncoder(res_feat_dim, pair_feat_dim, num_layers, **encoder_opt)

        self.eps_crd_net = nn.Sequential(
            nn.Linear(res_feat_dim+3, res_feat_dim), nn.ReLU(),
            nn.Linear(res_feat_dim, res_feat_dim), nn.ReLU(),
            nn.Linear(res_feat_dim, 3)
        )

        self.eps_rot_net = nn.Sequential(
            nn.Linear(res_feat_dim+3, res_feat_dim), nn.ReLU(),
            nn.Linear(res_feat_dim, res_feat_dim), nn.ReLU(),
            nn.Linear(res_feat_dim, 3)
        )

        self.eps_seq_net = nn.Sequential(
            nn.Linear(res_feat_dim+3, res_feat_dim), nn.ReLU(),
            nn.Linear(res_feat_dim, res_feat_dim), nn.ReLU(),
            nn.Linear(res_feat_dim, 20), nn.Softmax(dim=-1) 
        )

    def forward(self, v_t, p_t, s_t, res_feat, pair_feat, beta, mask_generate, mask_res):
        """
        Args:
            v_t:    (N, L, 3).
            p_t:    (N, L, 3).
            s_t:    (N, L).
            res_feat:   (N, L, res_dim).
            pair_feat:  (N, L, L, pair_dim).
            beta:   (N,).
            mask_generate:    (N, L).
            mask_res:       (N, L).
        Returns:
            v_next: UPDATED (not epsilon) SO3-vector of orietnations, (N, L, 3).
            eps_pos: (N, L, 3).
        """
        N, L = mask_res.size()
        R = so3vec_to_rotation(v_t) # (N, L, 3, 3)

        # s_t = s_t.clamp(min=0, max=19)  # TODO: clamping is good but ugly.
        res_feat = self.res_feat_mixer(torch.cat([res_feat, self.current_sequence_embedding(s_t)], dim=-1)) # [Important] Incorporate sequence at the current step.
        res_feat = self.encoder(R, p_t, res_feat, pair_feat, mask_res)

        t_embed = torch.stack([beta, torch.sin(beta), torch.cos(beta)], dim=-1)[:, None, :].expand(N, L, 3)
        in_feat = torch.cat([res_feat, t_embed], dim=-1)

        # Position changes
        eps_crd = self.eps_crd_net(in_feat)    # (N, L, 3)
        eps_pos = apply_rotation_to_vector(R, eps_crd)  # (N, L, 3)
        eps_pos = torch.where(mask_generate[:, :, None].expand_as(eps_pos), eps_pos, torch.zeros_like(eps_pos))

        # New orientation
        eps_rot = self.eps_rot_net(in_feat)    # (N, L, 3)
        U = quaternion_1ijk_to_rotation_matrix(eps_rot) # (N, L, 3, 3)
        R_next = R @ U
        v_next = rotation_to_so3vec(R_next)     # (N, L, 3)
        v_next = torch.where(mask_generate[:, :, None].expand_as(v_next), v_next, v_t)

        # New sequence categorical distributions
        c_denoised = self.eps_seq_net(in_feat)  # Already softmax-ed, (N, L, 20)

        return v_next, R_next, eps_pos, c_denoised


class FullDPM(nn.Module):

    def __init__(
        self, 
        res_feat_dim, 
        pair_feat_dim, 
        num_steps, 
        eps_net_opt={}, 
        trans_rot_opt={}, 
        trans_pos_opt={}, 
        trans_seq_opt={},
        position_mean=[0.0, 0.0, 0.0],
        position_scale=[10.0],
    ):
        super().__init__()
        self.eps_net = EpsilonNet(res_feat_dim, pair_feat_dim, **eps_net_opt)
        self.num_steps = num_steps
        self.trans_rot = RotationTransition(num_steps, **trans_rot_opt)
        self.trans_pos = PositionTransition(num_steps, **trans_pos_opt)
        self.trans_seq = AminoacidCategoricalTransition(num_steps, **trans_seq_opt)

        self.register_buffer('position_mean', torch.FloatTensor(position_mean).view(1, 1, -1))
        self.register_buffer('position_scale', torch.FloatTensor(position_scale).view(1, 1, -1))
        self.register_buffer('_dummy', torch.empty([0, ]))

    def _normalize_position(self, p):
        p_norm = (p - self.position_mean) / self.position_scale
        return p_norm

    def _unnormalize_position(self, p_norm):
        p = p_norm * self.position_scale + self.position_mean
        return p

    def forward(self, v_0, p_0, s_0, res_feat, pair_feat, mask_generate, mask_res, denoise_structure, denoise_sequence, t=None):
        N, L = res_feat.shape[:2]
        if t == None:
            t = torch.randint(0, self.num_steps, (N,), dtype=torch.long, device=self._dummy.device)
        p_0 = self._normalize_position(p_0)

        if denoise_structure:
            # Add noise to rotation
            R_0 = so3vec_to_rotation(v_0)
            v_noisy, _ = self.trans_rot.add_noise(v_0, mask_generate, t)
            # Add noise to positions
            p_noisy, eps_p = self.trans_pos.add_noise(p_0, mask_generate, t)
        else:
            R_0 = so3vec_to_rotation(v_0)
            v_noisy = v_0.clone()
            p_noisy = p_0.clone()
            eps_p = torch.zeros_like(p_noisy)

        if denoise_sequence:
            # Add noise to sequence
            _, s_noisy = self.trans_seq.add_noise(s_0, mask_generate, t)
        else:
            s_noisy = s_0.clone()

        beta = self.trans_pos.var_sched.betas[t]
        v_pred, R_pred, eps_p_pred, c_denoised = self.eps_net(
            v_noisy, p_noisy, s_noisy, res_feat, pair_feat, beta, mask_generate, mask_res
        )   # (N, L, 3), (N, L, 3, 3), (N, L, 3), (N, L, 20), (N, L)

        loss_dict = {}

        # Rotation loss
        loss_rot = rotation_matrix_cosine_loss(R_pred, R_0) # (N, L)
        loss_rot = (loss_rot * mask_generate).sum() / (mask_generate.sum().float() + 1e-8)
        loss_dict['rot'] = loss_rot

        # Position loss
        loss_pos = F.mse_loss(eps_p_pred, eps_p, reduction='none').sum(dim=-1)  # (N, L)
        loss_pos = (loss_pos * mask_generate).sum() / (mask_generate.sum().float() + 1e-8)
        loss_dict['pos'] = loss_pos

        # Sequence categorical loss
        post_true = self.trans_seq.posterior(s_noisy, s_0, t)
        log_post_pred = torch.log(self.trans_seq.posterior(s_noisy, c_denoised, t) + 1e-8)
        kldiv = F.kl_div(
            input=log_post_pred, 
            target=post_true, 
            reduction='none',
            log_target=False
        ).sum(dim=-1)    # (N, L)
        loss_seq = (kldiv * mask_generate).sum() / (mask_generate.sum().float() + 1e-8)
        loss_dict['seq'] = loss_seq

        return loss_dict

    @torch.no_grad()
    def sample(
        self, 
        v, p, s, 
        res_feat, pair_feat, 
        mask_generate, mask_res, 
        sample_structure=True, sample_sequence=True,
        pbar=False,
    ):
        """
        Args:
            v:  Orientations of contextual residues, (N, L, 3).
            p:  Positions of contextual residues, (N, L, 3).
            s:  Sequence of contextual residues, (N, L).
        """
        N, L = v.shape[:2]
        p = self._normalize_position(p)

        # Set the orientation and position of residues to be predicted to random values
        if sample_structure:
            v_rand = random_uniform_so3([N, L], device=self._dummy.device)
            p_rand = torch.randn_like(p)
            v_init = torch.where(mask_generate[:, :, None].expand_as(v), v_rand, v)
            p_init = torch.where(mask_generate[:, :, None].expand_as(p), p_rand, p)
        else:
            v_init, p_init = v, p

        if sample_sequence:
            s_rand = torch.randint_like(s, low=0, high=19)
            s_init = torch.where(mask_generate, s_rand, s)
        else:
            s_init = s

        traj = {self.num_steps: (v_init, self._unnormalize_position(p_init), s_init)}
        if pbar:
            pbar = functools.partial(tqdm, total=self.num_steps, desc='Sampling')
        else:
            pbar = lambda x: x
        for t in pbar(range(self.num_steps, 0, -1)):
            v_t, p_t, s_t = traj[t]
            p_t = self._normalize_position(p_t)
            
            beta = self.trans_pos.var_sched.betas[t].expand([N, ])
            t_tensor = torch.full([N, ], fill_value=t, dtype=torch.long, device=self._dummy.device)

            v_next, R_next, eps_p, c_denoised = self.eps_net(
                v_t, p_t, s_t, res_feat, pair_feat, beta, mask_generate, mask_res
            )   # (N, L, 3), (N, L, 3, 3), (N, L, 3)

            v_next = self.trans_rot.denoise(v_t, v_next, mask_generate, t_tensor)
            p_next = self.trans_pos.denoise(p_t, eps_p, mask_generate, t_tensor)
            _, s_next = self.trans_seq.denoise(s_t, c_denoised, mask_generate, t_tensor)

            if not sample_structure:
                v_next, p_next = v_t, p_t
            if not sample_sequence:
                s_next = s_t

            traj[t-1] = (v_next, self._unnormalize_position(p_next), s_next)
            traj[t] = tuple(x.cpu() for x in traj[t])    # Move previous states to cpu memory.

        return traj

    @torch.no_grad()
    def optimize(
        self, 
        v, p, s, 
        opt_step: int,
        res_feat, pair_feat, 
        mask_generate, mask_res, 
        sample_structure=True, sample_sequence=True,
        pbar=False,
    ):
        """
        Description:
            First adds noise to the given structure, then denoises it.
        """
        N, L = v.shape[:2]
        p = self._normalize_position(p)
        t = torch.full([N, ], fill_value=opt_step, dtype=torch.long, device=self._dummy.device)

        # Set the orientation and position of residues to be predicted to random values
        if sample_structure:
            # Add noise to rotation
            v_noisy, _ = self.trans_rot.add_noise(v, mask_generate, t)
            # Add noise to positions
            p_noisy, _ = self.trans_pos.add_noise(p, mask_generate, t)
            v_init = torch.where(mask_generate[:, :, None].expand_as(v), v_noisy, v)
            p_init = torch.where(mask_generate[:, :, None].expand_as(p), p_noisy, p)
        else:
            v_init, p_init = v, p

        if sample_sequence:
            _, s_noisy = self.trans_seq.add_noise(s, mask_generate, t)
            s_init = torch.where(mask_generate, s_noisy, s)
        else:
            s_init = s

        traj = {opt_step: (v_init, self._unnormalize_position(p_init), s_init)}
        if pbar:
            pbar = functools.partial(tqdm, total=opt_step, desc='Optimizing')
        else:
            pbar = lambda x: x
        for t in pbar(range(opt_step, 0, -1)):
            v_t, p_t, s_t = traj[t]
            p_t = self._normalize_position(p_t)
            
            beta = self.trans_pos.var_sched.betas[t].expand([N, ])
            t_tensor = torch.full([N, ], fill_value=t, dtype=torch.long, device=self._dummy.device)

            v_next, R_next, eps_p, c_denoised = self.eps_net(
                v_t, p_t, s_t, res_feat, pair_feat, beta, mask_generate, mask_res
            )   # (N, L, 3), (N, L, 3, 3), (N, L, 3)

            v_next = self.trans_rot.denoise(v_t, v_next, mask_generate, t_tensor)
            p_next = self.trans_pos.denoise(p_t, eps_p, mask_generate, t_tensor)
            _, s_next = self.trans_seq.denoise(s_t, c_denoised, mask_generate, t_tensor)

            if not sample_structure:
                v_next, p_next = v_t, p_t
            if not sample_sequence:
                s_next = s_t

            traj[t-1] = (v_next, self._unnormalize_position(p_next), s_next)
            traj[t] = tuple(x.cpu() for x in traj[t])    # Move previous states to cpu memory.

        return traj