File size: 14,997 Bytes
753e275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import os
import random
import logging
import datetime
import pandas as pd
import joblib
import pickle
import lmdb
import subprocess
import torch
from Bio import PDB, SeqRecord, SeqIO, Seq
from Bio.PDB import PDBExceptions
from Bio.PDB import Polypeptide
from torch.utils.data import Dataset
from tqdm.auto import tqdm

from ..utils.protein import parsers, constants
from ._base import register_dataset


ALLOWED_AG_TYPES = {
    'protein',
    'protein | protein',
    'protein | protein | protein',
    'protein | protein | protein | protein | protein',
    'protein | protein | protein | protein',
}

RESOLUTION_THRESHOLD = 4.0

TEST_ANTIGENS = [
    'sars-cov-2 receptor binding domain',
    'hiv-1 envelope glycoprotein gp160',
    'mers s',
    'influenza a virus',
    'cd27 antigen',
]


def nan_to_empty_string(val):
    if val != val or not val:
        return ''
    else:
        return val


def nan_to_none(val):
    if val != val or not val:
        return None
    else:
        return val


def split_sabdab_delimited_str(val):
    if not val:
        return []
    else:
        return [s.strip() for s in val.split('|')]


def parse_sabdab_resolution(val):
    if val == 'NOT' or not val or val != val:
        return None
    elif isinstance(val, str) and ',' in val:
        return float(val.split(',')[0].strip())
    else:
        return float(val)


def _aa_tensor_to_sequence(aa):
    return ''.join([Polypeptide.index_to_one(a.item()) for a in aa.flatten()])


def _label_heavy_chain_cdr(data, seq_map, max_cdr3_length=30):
    if data is None or seq_map is None:
        return data, seq_map

    # Add CDR labels
    cdr_flag = torch.zeros_like(data['aa'])
    for position, idx in seq_map.items():
        resseq = position[1]
        cdr_type = constants.ChothiaCDRRange.to_cdr('H', resseq)
        if cdr_type is not None:
            cdr_flag[idx] = cdr_type
    data['cdr_flag'] = cdr_flag

    # Add CDR sequence annotations
    data['H1_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H1] )
    data['H2_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H2] )
    data['H3_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H3] )

    cdr3_length = (cdr_flag == constants.CDR.H3).sum().item()
    # Remove too long CDR3
    if cdr3_length > max_cdr3_length:
        cdr_flag[cdr_flag == constants.CDR.H3] = 0
        logging.warning(f'CDR-H3 too long {cdr3_length}. Removed.')
        return None, None

    # Filter: ensure CDR3 exists
    if cdr3_length == 0:
        logging.warning('No CDR-H3 found in the heavy chain.')
        return None, None

    return data, seq_map


def _label_light_chain_cdr(data, seq_map, max_cdr3_length=30):
    if data is None or seq_map is None:
        return data, seq_map
    cdr_flag = torch.zeros_like(data['aa'])
    for position, idx in seq_map.items():
        resseq = position[1]
        cdr_type = constants.ChothiaCDRRange.to_cdr('L', resseq)
        if cdr_type is not None:
            cdr_flag[idx] = cdr_type
    data['cdr_flag'] = cdr_flag

    data['L1_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L1] )
    data['L2_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L2] )
    data['L3_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L3] )

    cdr3_length = (cdr_flag == constants.CDR.L3).sum().item()
    # Remove too long CDR3
    if cdr3_length > max_cdr3_length:
        cdr_flag[cdr_flag == constants.CDR.L3] = 0
        logging.warning(f'CDR-L3 too long {cdr3_length}. Removed.')
        return None, None

    # Ensure CDR3 exists
    if cdr3_length == 0:
        logging.warning('No CDRs found in the light chain.')
        return None, None

    return data, seq_map


def preprocess_sabdab_structure(task):
    entry = task['entry']
    pdb_path = task['pdb_path']

    parser = PDB.PDBParser(QUIET=True)
    model = parser.get_structure(id, pdb_path)[0]

    parsed = {
        'id': entry['id'],
        'heavy': None,
        'heavy_seqmap': None,
        'light': None,
        'light_seqmap': None,
        'antigen': None,
        'antigen_seqmap': None,
    }
    try:
        if entry['H_chain'] is not None:
            (
                parsed['heavy'], 
                parsed['heavy_seqmap']
            ) = _label_heavy_chain_cdr(*parsers.parse_biopython_structure(
                model[entry['H_chain']],
                max_resseq = 113    # Chothia, end of Heavy chain Fv
            ))
        
        if entry['L_chain'] is not None:
            (
                parsed['light'], 
                parsed['light_seqmap']
            ) = _label_light_chain_cdr(*parsers.parse_biopython_structure(
                model[entry['L_chain']],
                max_resseq = 106    # Chothia, end of Light chain Fv
            ))

        if parsed['heavy'] is None and parsed['light'] is None:
            raise ValueError('Neither valid H-chain or L-chain is found.')
    
        if len(entry['ag_chains']) > 0:
            chains = [model[c] for c in entry['ag_chains']]
            (
                parsed['antigen'], 
                parsed['antigen_seqmap']
            ) = parsers.parse_biopython_structure(chains)

    except (
        PDBExceptions.PDBConstructionException, 
        parsers.ParsingException, 
        KeyError,
        ValueError,
    ) as e:
        logging.warning('[{}] {}: {}'.format(
            task['id'], 
            e.__class__.__name__, 
            str(e)
        ))
        return None

    return parsed


class SAbDabDataset(Dataset):

    MAP_SIZE = 32*(1024*1024*1024)  # 32GB

    def __init__(
        self, 
        summary_path = './data/sabdab_summary_all.tsv', 
        chothia_dir = './data/all_structures/chothia', 
        processed_dir = './data/processed',
        split = 'train',
        split_seed = 2022,
        transform = None,
        reset = False,
    ):
        super().__init__()
        self.summary_path = summary_path
        self.chothia_dir = chothia_dir
        if not os.path.exists(chothia_dir):
            raise FileNotFoundError(
                f"SAbDab structures not found in {chothia_dir}. "
                "Please download them from http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/archive/all/"
            )
        self.processed_dir = processed_dir
        os.makedirs(processed_dir, exist_ok=True)

        self.sabdab_entries = None
        self._load_sabdab_entries()

        self.db_conn = None
        self.db_ids = None
        self._load_structures(reset)

        self.clusters = None
        self.id_to_cluster = None
        self._load_clusters(reset)

        self.ids_in_split = None
        self._load_split(split, split_seed)

        self.transform = transform

    def _load_sabdab_entries(self):
        df = pd.read_csv(self.summary_path, sep='\t')
        entries_all = []
        for i, row in tqdm(
            df.iterrows(), 
            dynamic_ncols=True, 
            desc='Loading entries',
            total=len(df),
        ):
            entry_id = "{pdbcode}_{H}_{L}_{Ag}".format(
                pdbcode = row['pdb'],
                H = nan_to_empty_string(row['Hchain']),
                L = nan_to_empty_string(row['Lchain']),
                Ag = ''.join(split_sabdab_delimited_str(
                    nan_to_empty_string(row['antigen_chain'])
                ))
            )
            ag_chains = split_sabdab_delimited_str(
                nan_to_empty_string(row['antigen_chain'])
            )
            resolution = parse_sabdab_resolution(row['resolution'])
            entry = {
                'id': entry_id,
                'pdbcode': row['pdb'],
                'H_chain': nan_to_none(row['Hchain']),
                'L_chain': nan_to_none(row['Lchain']),
                'ag_chains': ag_chains,
                'ag_type': nan_to_none(row['antigen_type']),
                'ag_name': nan_to_none(row['antigen_name']),
                'date': datetime.datetime.strptime(row['date'], '%m/%d/%y'),
                'resolution': resolution,
                'method': row['method'],
                'scfv': row['scfv'],
            }

            # Filtering
            if (
                (entry['ag_type'] in ALLOWED_AG_TYPES or entry['ag_type'] is None)
                and (entry['resolution'] is not None and entry['resolution'] <= RESOLUTION_THRESHOLD)
            ):
                entries_all.append(entry)
        self.sabdab_entries = entries_all

    def _load_structures(self, reset):
        if not os.path.exists(self._structure_cache_path) or reset:
            if os.path.exists(self._structure_cache_path):
                os.unlink(self._structure_cache_path)
            self._preprocess_structures()

        with open(self._structure_cache_path + '-ids', 'rb') as f:
            self.db_ids = pickle.load(f)
        self.sabdab_entries = list(
            filter(
                lambda e: e['id'] in self.db_ids,
                self.sabdab_entries
            )
        )

    @property
    def _structure_cache_path(self):
        return os.path.join(self.processed_dir, 'structures.lmdb')
        
    def _preprocess_structures(self):
        tasks = []
        for entry in self.sabdab_entries:
            pdb_path = os.path.join(self.chothia_dir, '{}.pdb'.format(entry['pdbcode']))
            if not os.path.exists(pdb_path):
                logging.warning(f"PDB not found: {pdb_path}")
                continue
            tasks.append({
                'id': entry['id'],
                'entry': entry,
                'pdb_path': pdb_path,
            })

        data_list = joblib.Parallel(
            n_jobs = max(joblib.cpu_count() // 2, 1),
        )(
            joblib.delayed(preprocess_sabdab_structure)(task)
            for task in tqdm(tasks, dynamic_ncols=True, desc='Preprocess')
        )

        db_conn = lmdb.open(
            self._structure_cache_path,
            map_size = self.MAP_SIZE,
            create=True,
            subdir=False,
            readonly=False,
        )
        ids = []
        with db_conn.begin(write=True, buffers=True) as txn:
            for data in tqdm(data_list, dynamic_ncols=True, desc='Write to LMDB'):
                if data is None:
                    continue
                ids.append(data['id'])
                txn.put(data['id'].encode('utf-8'), pickle.dumps(data))

        with open(self._structure_cache_path + '-ids', 'wb') as f:
            pickle.dump(ids, f)

    @property
    def _cluster_path(self):
        return os.path.join(self.processed_dir, 'cluster_result_cluster.tsv')

    def _load_clusters(self, reset):
        if not os.path.exists(self._cluster_path) or reset:
            self._create_clusters()

        clusters, id_to_cluster = {}, {}
        with open(self._cluster_path, 'r') as f:
            for line in f.readlines():
                cluster_name, data_id = line.split()
                if cluster_name not in clusters:
                    clusters[cluster_name] = []
                clusters[cluster_name].append(data_id)
                id_to_cluster[data_id] = cluster_name
        self.clusters = clusters
        self.id_to_cluster = id_to_cluster

    def _create_clusters(self):
        cdr_records = []
        for id in self.db_ids:
            structure = self.get_structure(id)
            if structure['heavy'] is not None:
                cdr_records.append(SeqRecord.SeqRecord(
                    Seq.Seq(structure['heavy']['H3_seq']),
                    id = structure['id'],
                    name = '',
                    description = '',
                ))
            elif structure['light'] is not None:
                cdr_records.append(SeqRecord.SeqRecord(
                    Seq.Seq(structure['light']['L3_seq']),
                    id = structure['id'],
                    name = '',
                    description = '',
                ))
        fasta_path = os.path.join(self.processed_dir, 'cdr_sequences.fasta')
        SeqIO.write(cdr_records, fasta_path, 'fasta')

        cmd = ' '.join([
            'mmseqs', 'easy-cluster',
            os.path.realpath(fasta_path),
            'cluster_result', 'cluster_tmp',
            '--min-seq-id', '0.5',
            '-c', '0.8',
            '--cov-mode', '1',
        ])
        subprocess.run(cmd, cwd=self.processed_dir, shell=True, check=True)

    def _load_split(self, split, split_seed):
        assert split in ('train', 'val', 'test')
        ids_test = [
            entry['id']
            for entry in self.sabdab_entries
            if entry['ag_name'] in TEST_ANTIGENS
        ]
        test_relevant_clusters = set([self.id_to_cluster[id] for id in ids_test])

        ids_train_val = [
            entry['id']
            for entry in self.sabdab_entries
            if self.id_to_cluster[entry['id']] not in test_relevant_clusters
        ]
        random.Random(split_seed).shuffle(ids_train_val)
        if split == 'test':
            self.ids_in_split = ids_test
        elif split == 'val':
            self.ids_in_split = ids_train_val[:20]
        else:
            self.ids_in_split = ids_train_val[20:]

    def _connect_db(self):
        if self.db_conn is not None:
            return
        self.db_conn = lmdb.open(
            self._structure_cache_path,
            map_size=self.MAP_SIZE,
            create=False,
            subdir=False,
            readonly=True,
            lock=False,
            readahead=False,
            meminit=False,
        )

    def get_structure(self, id):
        self._connect_db()
        with self.db_conn.begin() as txn:
            return pickle.loads(txn.get(id.encode()))

    def __len__(self):
        return len(self.ids_in_split)

    def __getitem__(self, index):
        id = self.ids_in_split[index]
        data = self.get_structure(id)
        if self.transform is not None:
            data = self.transform(data)
        return data


@register_dataset('sabdab')
def get_sabdab_dataset(cfg, transform):
    return SAbDabDataset(
        summary_path = cfg.summary_path,
        chothia_dir = cfg.chothia_dir,
        processed_dir = cfg.processed_dir,
        split = cfg.split,
        split_seed = cfg.get('split_seed', 2022),
        transform = transform,
    )


if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--split', type=str, default='train')
    parser.add_argument('--processed_dir', type=str, default='./data/processed')
    parser.add_argument('--reset', action='store_true', default=False)
    args = parser.parse_args()
    if args.reset:
        sure = input('Sure to reset? (y/n): ')
        if sure != 'y':
            exit()
    dataset = SAbDabDataset(
        processed_dir=args.processed_dir,
        split=args.split, 
        reset=args.reset
    )
    print(dataset[0])
    print(len(dataset), len(dataset.clusters))