Spaces:
Runtime error
Runtime error
File size: 5,922 Bytes
753e275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import logging
import joblib
import pickle
import lmdb
from Bio import PDB
from Bio.PDB import PDBExceptions
from torch.utils.data import Dataset
from tqdm.auto import tqdm
from ..utils.protein import parsers
from .sabdab import _label_heavy_chain_cdr, _label_light_chain_cdr
from ._base import register_dataset
def preprocess_antibody_structure(task):
pdb_path = task['pdb_path']
H_id = task.get('heavy_id', 'H')
L_id = task.get('light_id', 'L')
parser = PDB.PDBParser(QUIET=True)
model = parser.get_structure(id, pdb_path)[0]
all_chain_ids = [c.id for c in model]
parsed = {
'id': task['id'],
'heavy': None,
'heavy_seqmap': None,
'light': None,
'light_seqmap': None,
'antigen': None,
'antigen_seqmap': None,
}
try:
if H_id in all_chain_ids:
(
parsed['heavy'],
parsed['heavy_seqmap']
) = _label_heavy_chain_cdr(*parsers.parse_biopython_structure(
model[H_id],
max_resseq = 113 # Chothia, end of Heavy chain Fv
))
if L_id in all_chain_ids:
(
parsed['light'],
parsed['light_seqmap']
) = _label_light_chain_cdr(*parsers.parse_biopython_structure(
model[L_id],
max_resseq = 106 # Chothia, end of Light chain Fv
))
if parsed['heavy'] is None and parsed['light'] is None:
raise ValueError(
f'Neither valid antibody H-chain or L-chain is found. '
f'Please ensure that the chain id of heavy chain is "{H_id}" '
f'and the id of the light chain is "{L_id}".'
)
ag_chain_ids = [cid for cid in all_chain_ids if cid not in (H_id, L_id)]
if len(ag_chain_ids) > 0:
chains = [model[c] for c in ag_chain_ids]
(
parsed['antigen'],
parsed['antigen_seqmap']
) = parsers.parse_biopython_structure(chains)
except (
PDBExceptions.PDBConstructionException,
parsers.ParsingException,
KeyError,
ValueError,
) as e:
logging.warning('[{}] {}: {}'.format(
task['id'],
e.__class__.__name__,
str(e)
))
return None
return parsed
@register_dataset('custom')
class CustomDataset(Dataset):
MAP_SIZE = 32*(1024*1024*1024) # 32GB
def __init__(self, structure_dir, transform=None, reset=False):
super().__init__()
self.structure_dir = structure_dir
self.transform = transform
self.db_conn = None
self.db_ids = None
self._load_structures(reset)
@property
def _cache_db_path(self):
return os.path.join(self.structure_dir, 'structure_cache.lmdb')
def _connect_db(self):
self._close_db()
self.db_conn = lmdb.open(
self._cache_db_path,
map_size=self.MAP_SIZE,
create=False,
subdir=False,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
with self.db_conn.begin() as txn:
keys = [k.decode() for k in txn.cursor().iternext(values=False)]
self.db_ids = keys
def _close_db(self):
if self.db_conn is not None:
self.db_conn.close()
self.db_conn = None
self.db_ids = None
def _load_structures(self, reset):
all_pdbs = []
for fname in os.listdir(self.structure_dir):
if not fname.endswith('.pdb'): continue
all_pdbs.append(fname)
if reset or not os.path.exists(self._cache_db_path):
todo_pdbs = all_pdbs
else:
self._connect_db()
processed_pdbs = self.db_ids
self._close_db()
todo_pdbs = list(set(all_pdbs) - set(processed_pdbs))
if len(todo_pdbs) > 0:
self._preprocess_structures(todo_pdbs)
def _preprocess_structures(self, pdb_list):
tasks = []
for pdb_fname in pdb_list:
pdb_path = os.path.join(self.structure_dir, pdb_fname)
tasks.append({
'id': pdb_fname,
'pdb_path': pdb_path,
})
data_list = joblib.Parallel(
n_jobs = max(joblib.cpu_count() // 2, 1),
)(
joblib.delayed(preprocess_antibody_structure)(task)
for task in tqdm(tasks, dynamic_ncols=True, desc='Preprocess')
)
db_conn = lmdb.open(
self._cache_db_path,
map_size = self.MAP_SIZE,
create=True,
subdir=False,
readonly=False,
)
ids = []
with db_conn.begin(write=True, buffers=True) as txn:
for data in tqdm(data_list, dynamic_ncols=True, desc='Write to LMDB'):
if data is None:
continue
ids.append(data['id'])
txn.put(data['id'].encode('utf-8'), pickle.dumps(data))
def __len__(self):
return len(self.db_ids)
def __getitem__(self, index):
self._connect_db()
id = self.db_ids[index]
with self.db_conn.begin() as txn:
data = pickle.loads(txn.get(id.encode()))
if self.transform is not None:
data = self.transform(data)
return data
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dir', type=str, default='./data/custom')
parser.add_argument('--reset', action='store_true', default=False)
args = parser.parse_args()
dataset = CustomDataset(
structure_dir = args.dir,
reset = args.reset,
)
print(dataset[0])
print(len(dataset))
|